Подпишись и читай
самые интересные
статьи первым!

Как движется самолет. Школьная энциклопедия. Почему самолеты летают низко

Довольно странно наблюдать, как многотонная машина легко поднимается со взлетной полосы аэродрома и плавно набирает высоту. Казалось бы, поднять столь тяжелую конструкцию в воздух задача невыполнимая. Но, как видим, это не так. Почему самолет не падает, и за счет чего летит?

Ответ на этот вопрос лежит в тех физических законах, которые позволяют поднять в воздух летательные аппараты. Они верны не только в отношении планеров и легких спортивных самолетов, но и в отношении многотонных транспортных лайнеров, которые способны нести дополнительную полезную нагрузку. И вообще уж фантастическим, кажется полет вертолета, которые может не только двигаться по прямой линии, но и зависать на одном месте.

Полет летательных аппаратов стал возможен, благодаря совокупному использованию двух сил – подъемной, и силы тяги двигателей. И если с силой тяги все более или менее понятно, то с подъемной силой все обстоит несколько сложнее. Несмотря на то, что с этим выражением мы все хорошо знакомы, объяснить его может не каждый.

И так, какова природа появления подъемной силы?

Давайте внимательно посмотрим на крыло самолета, благодаря которому он и может держаться в воздухе. Снизу оно совершенно плоское, а сверху имеет сферическую форму, с выпуклостью наружу. Во время движения самолета воздушные потоки спокойно проходят под нижней частью крыла, не претерпевая каких — либо изменений. Но чтобы пройти над верхней поверхностью крыльев, воздушный поток должен сжаться. В результате мы получаем эффект продавленной трубы, сквозь которую должен пройти воздух.

Чтобы обогнуть сферическую поверхность крыла, воздуху понадобится больше времени, нежели при его прохождении под нижней, плоской поверхностью. По этой причине над крылом он движется быстрее, что, в свою очередь, приводит к возникновению разности давлений. Под крылом оно значительно больше, нежели над крылом, из-за чего и возникает подъемная сила. В данном случае действует закон Бернулли, с которым каждый из нас знаком со школьной скамьи. Самое главное в том, что разность давлений будет тем больше, чем выше скорость движения объекта. Вот и получается, что подъемная сила может возникать лишь при движении самолета. Она давит на крыло, заставляя его подниматься.

По мере разгона самолета по взлетной полосе, увеличивается и разность давлений, что приводит к возникновению подъемной силы. С набором скорости она постепенно растет, сравнивается с массой самолета, и как ее превысит, он взлетает. После набора высоты, пилоты уменьшают скорость, подъемная сила сравнивается с весом самолета, что заставляет его лететь в горизонтальной плоскости.

Чтобы самолет двигался вперед, его оснащают мощными двигателями, которые гонят воздушный поток в направлении крыльев. С их помощью можно регулировать интенсивность воздушного потока, а, следовательно, и силу тяги.

У некоторых исследователей появлялись безумные идеи – они хотели полететь, но почему же результат оказался таким плачевным? Давно проводились попытки приделать к себе крылья, и, махая ими, взлететь в небо как пернатые. Оказалось, что силы человека недостаточно для поднятия себя на машущих крыльях.

Первыми народными умельцами были естествоиспытатели из Китая. Сведения о них записаны в «Цань-хань-шу» в первом веке нашей эры. Дальше история пестрит случаями подобного рода, которые происходили и в Европе, и в Азии, и в России.

Первое научное обоснование процессу полета дал Леонардо да Винчи в 1505 году. Он заметил, что птицам не обязательно махать , они могут держаться на неподвижном воздухе. Из этого ученый сделал вывод, что полет возможен, когда крылья движутся относительно воздуха, т.е. когда машут крыльями при отсутствии ветра или когда при неподвижных крыльях.

Почему же самолет летит?

Удерживать в воздухе помогает подъемная сила, которая действует только на больших скоростях. Особая контракция крыла позволяет создавать подъемную силу. Воздух, который движется над и под крылом, претерпевает изменения. Над крылом он разреженный, а под крылом – . Создаются два воздушных потока, направленные вертикально. Нижний поток приподнимает крылья, т.е. самолет, а верхний подталкивает вверх. Таким образом, получается, что на больших скоростях воздух под летательным аппаратом становится твердым.

Так реализуется вертикальное движение, но что заставляет самолет двигаться горизонтально? – Двигатели! Пропеллеры как бы просверливают путь в воздушном пространстве, преодолевая сопротивление воздуха.

Таким образом, подъемная сила преодолевает силу притяжения, а тяговая – силу торможения, и самолет летит.

Физические явления, лежащие в основе управления полетом

В самолете все держится на равновесии подъемной силы и силы земного притяжения. Самолет летит прямо. Увеличение скорости полета увеличит подъемную силу, самолет станет подниматься. Чтобы нивелировать этот эффект, пилот обязан опустить нос самолета.

Уменьшение скорости окажет прямо противоположный эффект, и пилоту потребуется поднять нос самолета. Если этого не сделать, произойдет крушение. В связи с указанными выше особенностями существует риск разбиться, когда самолет теряет высоту. Если это происходит близко к поверхности земли, риск почти 100%. Если это происходит высоко над землей, пилот успеет увеличить скорость и набрать высоту.

Почему самолеты летают? Мечта о полете с древнейших времен сопровождала человека. Она нашла отражение в древнегреческом мифе о Дедале и Икаре, чертежи нескольких летательных аппаратов оставил после себя великий Леонардо да Винчи, о диковинных способах перемещения в воздушном пространстве фантазировал Сирано де Бержерак.

Помимо этого, в истории многих цивилизаций остались задокументированные сведения об удачных и не очень попытках отчаянных изобретателей оторваться от земли. Среди них достойны упоминания:

  • полеты на воздушных змеях и «небесных фонариках», первых прототипах аэростатов, в Китае еще до Средневековья,
  • прародитель дельтаплана, успешно прошедший испытание в Кордовском халифате в 9 веке,
  • первый парашют на основе набросков да Винчи в Европе начала 17-го века,
  • удачные полеты на планере и ракете в Османской империи в 17 веке.

Первый официально зафиксированный полет человека на летательном аппарате был совершен на воздушном конструкции братьев Монгольфье в 1783 году. Однако, построить первую рабочую модель самолета стало возможно только в начале 20-го века, после промышленной революции, серьезно ускорившей научно-технический прогресс.

Давняя мечта человечества наконец осуществилась благодаря применению двигателя внутреннего сгорания в качестве силовой установки вместо парового двигателя, архаичного и не обеспечивавшего необходимой мощности.

Почему самолеты летают?

Современные самолеты – сложные высокотехнологичные летательные аппараты с большой массой или, как принято говорить, с массой больше массы воздуха. При этом им, кажется, легко удается презреть закон всемирного тяготения и оторваться от земли. Это достигается благодаря законам аэродинамики и двум важнейшим конструктивным элементам самолета:

  • силовая установка ();
  • форма крыла.

Наличие силовой установки отличает самолет от планера, а статичность крыла – от вертолета.

Крыло самолета – поверхность со сложной, обусловленной требованиями аэродинамики форой, основное назначение которой заключается в создании подъемной аэродинамической силы, необходимой для отрыва от земли и дальнейшего полета. Подъемная сила возникает при разгоне воздушного судна за счет того, что находящееся под острым углом к встречным воздушным массам крыло создает разницу давлений.

Происходит это из-за выпуклой сверху формы крыла: проходящий над ней поток воздуха обладает меньшим давлением, чем обтекающий снизу поток. Кстати, вопреки распространенному заблуждению, крыло у самолета всего одно. Фюзеляж просто делит его на две консоли: правую и левую.

Силовая установка (двигатель) – энергетический комплекс, отвечающий за создание тяги, которая, преодолевая сопротивление воздушных масс, обеспечивает самолету поступательное движение. Другими словами, именно силовая установка при взлете разгоняет воздушное судно до скорости, при которой крыло самолета начнет создавать подъемную силу, и поддерживает необходимую тягу при движении в воздушном пространстве. Существует три группы авиадвигателей, в зависимости от способа создания тяги:

  • винтовые;
  • реактивные;
  • смешанного типа или комбинированные.

Таким образом, совместная работа крыла и силовой установки самолета позволяет ему взлетать и перемещаться в воздушном пространстве. Конечно, двух указанных конструктивных элементов воздушного судна недостаточно для безопасного полёта. Конструкция самолета объединяет в себе множество систем, служащих этой цели.

Почему самолеты летают на высоте 10000 метров?

Согласно бытующему мнению, самолеты летают на высоте примерно в 10 км. Это не совсем так, для каждого полета существует своя оптимальная высота, которая зависит от типа самолета и его характеристик, удельного веса воздушного судна и метеоусловий в текущий момент.

Зачастую ее выбор осуществляется даже не экипажем корабля, а диспетчерской службой на земле. Кроме того, нужно отметить, что в гражданском воздухоплавании используется правило «четности-нечетности»: движущиеся на запад, северо-запад и юго-запад лайнеры придерживаются четной высоты кратной тысячам метров (10 тысяч метров), а направляющиеся в другие стороны – нечетной (9 или 11 тысяч метров).

Первый самолет братьев Райт поднимался в воздух всего на 3 метра, современные самые легкие самолеты совершают полет на высоте до 2 километров, а для истребителей последнего поколения оптимальная высота – примерно 20 тысяч метров.

Однако, для большинства пассажирских лайнеров идеальная высота полета находится между 9 и 12 тысячами метров над поверхностью, то есть действительно можно говорить о 10 километрах, как средней высоте полета в гражданской авиации. Такой выбор обусловлен несколькими причинами:

  • банальная экономия – на большей высоте меньшая плотность воздуха, меньшее встречное сопротивление, а значит меньше и расход топлива;
  • на этой высоте воздушное судно меньше зависит от атмосферных явлений;
  • температура на 10 тысячах метров – около -50 градусов по Цельсию — хорошо подходит для охлаждения реактивных двигателей лайнеров;
  • большая высота обеспечивает больше времени на принятия решений экипажем, а также выполнение манёвров и планирование в случае возникновения чрезвычайной ситуации на борту;
  • на таких высотах отсутствует вероятность столкновения со стаями птиц, которое может привести к внештатной ситуации.

У каждого самолета существует крайнее значение высоты, при котором давление воздуха способно создавать подъемную силу. Выше 12 тысяч метров воздух становится слишком разреженным для пассажирского лайнера со средними характеристиками. Мощность двигателя падает, а объем расхода топлива резко увеличивается, а самолет начинает «заваливаться».

Почему самолеты не летают через полюса?

На самом деле, кроссполярные пассажирские рейсы, хоть их количество и невелико, на данный момент регулярно осуществляются. По крайней мере, воздушные трассы через Северный Полюс были открыты в 2001 году, и на данный момент их успешно используют авиаперевозчики США, Канады, Китая, Кореи, Сингапура, Таиланда и ОАЭ. Однако, есть два момента, осложняющих развитие подобных маршрутов:

  • сложности с радиолокационной поддержкой диспетчерской службой на всем протяжении маршрута;
  • недостаточное техническое оснащение и плохое аэронавигационное обслуживание в Сибирской части Евразийского континента.

Возможно, дальнейший технический прогресс и выполнение масштабных проектов по строительству аэронавигационных станций в местах прохождения маршрутов сделают полеты через Северный Полюс более распространенным явлением.

Экономический смысл в этом есть: подсчитано, что кроссполярные перелеты позволят исключить пересадки и на 25% сократить полетное время на маршрутах, соединяющих Северную Америку и Азию. Южный Полюс в свою очередь удален от основных воздушных магистралей, и рациональных причин на прохождение регулярных рейсов вблизи него нет.

Почему самолеты не летают через Индийский океан?

Действительно, если открыть любую карту полетов, можно обнаружить, что маршрут воздушных судов, следующих над водами Индийского океана, всегда выстраивается вдоль суши, даже если такой путь кажется более длинным.

После нескольких авиапроисшествий последних лет, стало набирать популярность мистическое околонаучное объяснение катастроф и исчезновений летательных аппаратов в этом географическом регионе. Причем особенности карты полетов воздушных судов сторонники этой теории приводят, как доказательство своей правоты. Конечно, истинный ответ далек от мистики.

Современные пассажирские самолеты летают в соответствии с нормами ETOPS – сводом требований к полетам двухмоторных воздушных судов над местностью без ориентиров. Эти нормы были разработаны Международной организацией гражданской авиации.

Согласно ETOPS, маршруты составляются так, чтобы воздушное судно всегда находилось в пределах установленного максимального времени полета до ближайшего аэропорта, куда можно было бы дотянуть в случае отказа одного их двигателей.

В настоящее время максимальный интервал по этим нормам составляет 180 минут, в зависимости от конструкции самолеты также сертифицируют на 60 и 120 минут предельного удаления от ближайшего аэродрома. Вот почему через безлюдные просторы Индийского Океана почти не проходят маршруты гражданской авиации.

Почему самолеты летают низко?

Если исключить очевидные набор высоты и заход на посадку, в повседневной жизни мы чаще наблюдаем на небольшой высоте самолеты военно-воздушных сил, МЧС или летательные аппараты сельскохозяйственного назначения. При этом есть причина, по которой пассажирские лайнеры могут в течении долгого времени совершать полет сравнительно низко. Она как правило связана с необходимостью незапланированной посадки.

В авиации существует такой параметр, как максимальная посадочная масса, которую выдерживает шасси при посадке. Обычно топливо в самолет заливается на прохождение расстояния по маршруту с навигационным запасом. В случае необходимости посадки самолета раньше запланированного, когда топлива на борту еще много и максимальная посадочная масса выше допустимого значения, излишки топлива «сжигают» полетом на низких высотах. Если этого не сделать, шасси просто не выдержит посадки.

Человечество издавна интересовал вопрос, как же так получается, что многотонный летательный аппарат легко поднимается к небесам. Как же происходит взлет и как летают самолеты? Когда авиалайнер движется на большой скорости по взлетной полосе, у крыльев появляется подъемная сила и работает снизу вверх.

При движении воздушного судна вырабатывается разница давлений на нижнюю и верхнюю стороны крыла, благодаря чему получается подъемная сила, удерживающая воздушное судно в воздухе. Т.е. высокое давление воздуха снизу толкает крыло вверх, при этом низкое давление сверху затягивает крыло на себя. В результате крыло поднимается.

Для взлета авиалайнера, ему необходим достаточный разбег. Подъемная сила крыльев увеличивается в процессе набора скорости , которая должна превысить предельный взлетный режим. Затем пилот увеличивает угол взлета , отводя штурвал к себе. Носовая часть лайнера поднимается вверх, и машина поднимается в воздух.

Затем убираются шасси и выпускные фары . С целью уменьшения подъемной силы крыла, пилот постепенно выполняет уборку механизации. Когда авиалайнер достигнет необходимого уровня, летчик устанавливает стандартное давление, а двигателям – номинальный режим . Чтобы посмотреть, как взлетает самолет, видео предлагаем просмотреть в конце статьи.

Взлет судна выполняется под углом . С практической точки зрения этому можно дать следующее объяснение. Руль высоты – это подвижная поверхность, управляя которой можно вызвать отклонение самолета по тангажу.

Рулем высоты можно управлять углом тангажа, т.е. изменять скорость набора или потери высоты. Это происходит вследствие изменения угла атаки и силы подъема. Увеличивая скорость двигателя, пропеллер начинает крутиться быстрее и поднимает авиалайнер вверх. И наоборот, направляя рули высоты вниз, нос самолета опускается вниз, при этом скорость двигателя следует уменьшать.

Хвостовая часть авиалайнера укомплектована рулем направления и тормозами на обе стороны колес.

Как летают авиалайнеры

Отвечая на вопрос, почему летают самолеты, следует вспомнить закон физики. Разница давлений воздействует на подъемную силу крыла.

Скорость потока будет больше, если давление воздуха будет низким и с точностью, наоборот.

Поэтому, если скорость авиалайнера большая, то его крылья приобретают подъемную силу, которая толкает воздушное судно.

Еще на подъемную силу крыла авиалайнера влияют некоторые обстоятельства: угол атаки, скорость и плотность потока воздуха, площадь, профиль и форма крыла.

Современные лайнеры имеют минимальную скорость от 180 до 250 км/час , при которых осуществляется взлет, планирует в небесах и не падает.

Высота полета

Какая же предельная и безопасная высота полета самолета.

Не все суда имеют одинаковую высоту полета , «воздушный потолок» может колебаться на высоте от 5000 до 12100 метров . На больших высотах плотность воздуха минимальная, при этом лайнер достигает наименьшего сопротивления воздуха.

Двигателю лайнера необходим фиксированный объем воздуха для сжигания, потому как двигатель не создаст нужной тяги. Также, при полетах на большой высоте, самолет экономит топливо до 80% в отличие от высоты до километра.

За счет чего самолет находится в воздухе

Чтобы ответить, почему самолеты летают, необходимо поочередно разобрать принципы его перемещения в воздухе. Реактивный авиалайнер с пассажирами на борту достигает несколько тонн, но при этом, легко взлетает и осуществляет тысячекилометровый перелет.

На движение в воздухе влияют и динамические свойства аппарата, конструкции агрегатов, формирующие полетную конфигурацию.

Силы, влияющие на движение самолета в воздухе

Работа авиалайнера начинается с запуска двигателя. Небольшие суда работают на поршневых двигателях, вращающих воздушные винты, при этом создается тяга, помогающая воздушному судну перемещаться в воздушном пространстве.

Большие авиалайнеры работают на реактивных двигателях, которые в процессе работы выбрасывают много воздуха, при этом реактивная сила приводит летательный аппарат к движению вперед.

Почему же самолет взлетает и находится долгое время в воздухе? Так как форма крыльев имеет разную конфигурацию: сверху округлая, а снизу плоская , то поток воздуха с обеих сторон не одинаковый. Сверху крыльев воздух скользит и становится разреженным, а давление его меньше, чем воздух снизу крыла. Потому, посредством неравномерного давления воздуха и форме крыльев, возникает сила, приводящая к взлету самолета вверх.

Но чтобы авиалайнер мог легко оторваться от земли, ему необходимо на высокой скорости совершить разбег по взлетной полосе.

Из этого следует вывод, чтобы авиалайнер беспрепятственно находился в полете, ему необходим движущийся воздух, который рассекают крылья и создает подъемную силу.

Взлет самолета и его скорость

Многих пассажиров интересует вопрос, какую скорость развивает самолет при взлете? Существует ошибочное представление, что скорость взлета для каждого самолета одинакова. Чтобы ответить на вопрос, какая скорость самолета при взлете, следует обратить внимание на немаловажные факторы.

  1. Авиалайнер не имеет строго фиксированной скорости. Подъемная сила воздушного лайнера зависит от его массы и длины крыльев . Взлет совершается тогда, когда при встречном потоке создается подъемная сила, которая на много больше массы самолета. Поэтому, взлет и скорость воздушного аппарата зависит от направления ветра, атмосферного давления, влажности, осадков, длины и состояния взлетной полосы.
  2. Чтобы создать подъемную силу и удачно выполнить отрыв от земли, самолету необходимо набрать максимальную взлетную скорость и достаточный разбег . Для этого требуются длинные взлетные полосы. Чем большегрузный самолет, тем требуются длиннее взлетно-посадочная полоса.
  3. Для каждого самолета существует своя шкала взлетных скоростей, потому что все они имеют свое предназначение: пассажирский, спортивный, грузовой. Чем легче самолет, тем взлетная скорость значительно ниже и наоборот.

Взлет пассажирского реактивного самолета Boeing 737

  • Разбег авиалайнера по взлетной полосе начинается, когда двигатель достигнет 800 оборотов в минуту, пилот потихоньку отпускает тормоза и держит рычаг управления на нейтральном уровне. Затем самолет продолжает движение на трех колесах;
  • Перед отрывом от земли скорость лайнера должна достигнуть 180 км в час . Затем летчик тянет рычаг, что приводит к отклонению щитков – закрылков и поднятию носовой части самолета. Далее разгон производится на двух колесах;
  • После, с приподнятой носовой частью, авиалайнер разгоняется на двух колесах до 220 км в час , а затем производится отрыв от земли.

Поэтому, если вы хотите подробнее узнать, как взлетает самолет, на какую высоту и с какой скоростью, мы предлагаем вам эту информацию в нашей статье. Надеемся, что от воздушного путешествия вы получите огромное удовольствие.

Приход лета в некоторые жаркие уголки нашей планеты приносит с собой не только изнурительный зной, но и задержки рейсов в аэропортах. Например, в Фениксе, штат Аризона, температура воздуха на днях достигла +48°С и авиакомпании были вынуждены отменить или перенести свыше 40 рейсов. В чём причина? Разве самолёты не летают в жару? Летают, но не при всякой температуре. По сообщениям СМИ, жара представляет особую проблему для самолётов Bombardier CRJ, максимальная рабочая температура взлёта для которых составляет +47,5°С. В то же время, большие самолёты от Airbus и Boeing могут летать и при температуре до +52°С градусов или около того. Разбираемся, чем вызваны такие ограничения.

Принцип подъёмной силы

Прежде чем пояснить, почему не каждый борт способен взлететь при высокой температуре воздуха необходимо осознать сам принцип, как летают самолёты. Конечно, каждый помнит ответ ещё со школы: «Всё дело в подъёмной силе крыла». Да, это верно, но не очень убедительно. Чтобы действительно понять законы физики, которые здесь задействованы, нужно обратить внимание на закон импульса . В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости.

На этом этапе вы можете подумать, что речь идёт об изменении импульса самолёта. Нет, вместо этого рассмотрим изменение импульса воздуха , набегающего на плоскость крыла. Представьте себе, что каждая молекула воздуха - это крошечный шар, который соударяется с самолётом. Ниже приведена диаграмма, которая показывает этот процесс.

Движущееся крыло сталкивается с воздушными шарами (то есть, молекулами воздуха). Шары изменяют свой импульс, что требует приложения силы. Поскольку действие равно противодействию, сила, которую крыло прикладывает к шарикам воздуха, имеет ту же величину, что и сила, с которой сами шарики воздействуют на крыло. Это приводит к двум результатам. Во-первых, обеспечивается подъёмная сила крыла. Во-вторых, появляется обратная сила - тяга. Вы не можете достичь подъёма без тяги .

Чтобы генерировать подъёмную силу, самолёт должен двигаться, а чтобы увеличить его скорость, вам нужна большая сила тяги. Если быть более точным, то вам потребуется ровно столько тяги, сколько нужно, чтобы сбалансировать силу сопротивления воздуха - тогда вы летите с той скоростью, с которой хотите. Как правило, эту тягу обеспечивают реактивный двигатель или пропеллер. Скорее всего, вы могли бы использовать даже ракетный двигатель, но в любом случае - вам нужен генератор тяги.

При чём здесь температура?

Если крыло сталкивается всего с одним шариком воздуха (то есть молекулой), это не приведёт к большой подъёмной силе. Чтобы увеличить подъёмную силу нужно много столкновений с молекулами воздуха. Добиться этого можно двумя путями:

  • двигаться быстрее , увеличивая число молекул, которые входят в контакт с крылом в единицу времени;
  • сконструировать крылья с большей площадью поверхности , потому что в таком случае крыло будет сталкиваться с большим числом молекул;
  • ещё один способ увеличения площади поверхности соприкосновения - использовать больший угол атаки за счёт наклона крыльев;
  • наконец, можно добиться большего числа столкновений крыла с молекулами воздуха, если плотность самого воздуха выше , то есть, количество самих молекул в единице объёма больше. Иными словами, увеличение плотности воздуха повышает подъёмную силу.

Этот вывод подводит нас к температуре воздуха. Что представляет собой воздух? Это множество микрочастиц, молекул, которые движутся прямо вокруг нас в разном направлении и с разной скоростью. И эти частицы сталкиваются друг с другом. По мере повышения температуры средняя скорость движения молекул также увеличивается. Увеличение температуры приводит к расширению газа, и одновременно - к уменьшению плотности воздуха . Вспомните, что нагретый воздух легче холодного, именно на этом явлении выстроен принцип воздухоплавания шаров-монгольфьеров.

Итак, для большей подъёмной силы нужна либо более высокая скорость, либо большая площадь крыла, либо больший угол атаки молекул на крыло. Ещё одно условие: чем выше значение плотности воздуха - тем больше подъёмная сила. Но верно и обратное: чем меньше плотность воздуха, тем меньше подъёмная сила. И это актуально для жарких уголков планеты. Из-за высокой температуры плотность воздуха слишком низкая для некоторых самолётов , её недостаточно, чтобы они могли взлететь.

Конечно, можно компенсировать снижение плотности воздуха за счёт увеличения скорости. Но как это осуществить в реальности? В таком случае необходимо устанавливать на самолёт более мощные двигатели, либо увеличивать длину взлётно-посадочной полосы. Поэтому для авиакомпаний гораздо проще некоторые рейсы просто отменить. Или, по крайней мере, перенести на вечер, раннее утро, когда температура окружающей среды буде ниже максимально допустимого предела.



Включайся в дискуссию
Читайте также
Автобан, вокзал, ларёк: куда приведут транспортные мечты Кудрово без метро
В аэропорту сочи религиозному еврею запретили молиться
Невзоров: Исаакиевский собор - это супермаркет Нет заявки - нет проблемы