Подпишись и читай
самые интересные
статьи первым!

Межзвездные перелеты. Межзвездные полеты: правда или миф? В каких условиях лететь

Межзвёздный полёт -- путешествие между звёздами пилотируемых аппаратов или автоматических станций. Чаще всего под межзвёздным полётом понимают пилотируемое путешествие, иногда с возможной колонизацией внесолнечных планет.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Основываясь на предвидимых технологиях и ресурсных возможностях, можно дать абрис будущих межзвездных перелетов.

При рассмотрении космического корабля любого назначения удобно разделить его на две части - двигательную установку и полезную нагрузку. Под двигательной установкой принято понимать не только собственно двигатели, но и баки с топливом, необходимые силовые конструкции. Для проблематики межзвездных перелетов именно двигательная установка является ключевым фактором, определяющим осуществимость проекта. Однако проблемы создания двигательной установки выходят за рамки настоящего рассмотрения. Сейчас для нас важно то, что существуют технологии, которые в ходе своего развития могут стать приемлемыми для осуществления межзвездных перелетов. Здесь на первом месте технологии использования инерциального термоядерного синтеза для ракетного движения. На американской установке NIF (National Ignition Facility) для исследования лазерного термоядерного синтеза стоимостью 3,5 миллиардов долларов уже получены результаты, говорящие о том, что ракетный двигатель на данном принципе может быть создан. Еще более мощная установка такого типа строится у нас под Саровом. Эти установки мало похожи на ракетные двигатели, но если их условно "разрезать" пополам, избавиться от фундаментов, стенок и многого ненужного в космосе оборудования, мы получим ракетный двигатель, который может быть доведен и до межзвездного варианта. Не вдаваясь в детали, отметим, что такие двигатели по необходимости будут большими, тяжелыми и очень мощными. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Располагая таким двигателем (а если такого двигателя нет, то и говорить не о чем), можно более свободно себя чувствовать, рассматривая параметры полезной нагрузки. По аналогии, если для велосипедиста лишние 50 кг уже ощутимы, то тепловоз и лишние 50 тонн не заметит.

Вооружившись таким пониманием, мы можем попробовать представить первую межзвездную экспедицию. При этом придется использовать результаты расчетов и оценок, которые сделаны, но здесь, по понятным причинам, воспроизведены быть не могут.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства.

Один корабль - это сотни тысяч тонн полезной нагрузки, миллионы тонн - двигатели, десятки миллионов тонн - топливо. Цифры могут напугать, но, чтобы не сильно пугаться, их можно сравнить с другими крупными строительствами. Давным-давно за 20 лет была построена пирамида Хеопса весом более 6 миллионов тонн. Или уже в наши времена -- в Канаде в 1965 году был построен остров "Норт-Дам". Только грунта потребовалось 15 миллионов тонн, а постройка заняла всего 10 месяцев. Самый большой морской корабль -- Knock Nevis -- имел водоизмещение 825 614 тонн. Строительство в космосе имеет свои специфические трудности, но имеет и некоторые преимущества, например, облегчение силовых элементов из-за невесомости, практическое отсутствие ограничений по массе и размерам (на Земле достаточно большая конструкция просто раздавит сама себя).

Примерно 95% массы межзвездного корабля составит термоядерное топливо. Вероятно, в его качестве будут использоваться бороводороды, топливо -- твердое, баки не нужны, что очень улучшает характеристики корабля и облегчает его постройку. Набирать бороводороды лучше не системе Земля-Луна, а где-нибудь подальше от Солнца, в системе Сатурна, например, чтобы избежать потерь на сублимацию. Время строительства можно оценить в несколько десятков лет. Срок не так уж и велик, а кроме того, теми же строителями параллельно будут вестись и другие работы в рамках освоения Солнечной системы. Строительство лучше начинать с сооружения жилых блоков корабля, в которых и поселятся строители и другие специалисты. Заодно, за время строительства и накопления топлива будет в течение десятилетий проверена стабильность работы замкнутой системы жизнеобеспечения.

Замкнутая система жизнеобеспечения - наверное, второй по сложности вопрос после проблемы двигателей. Один человек потребляет примерно 5 кг воды, еды и воздуха в сутки, если все брать с собой, потребуется больше 200 тысяч тон припасов. Решение - повторное использование ресурсов, так как это происходит на планете Земля.

В полной мере масштаб межзвездных расстояний перелетов можно ощутить, только если заняться рассмотрением средств осуществления таких полетов. Конечно, такое рассмотрение не имеет целью "ощутить расстояние". Не может оно рассматривается и как проектирование конкретной конструкции межзвездных кораблей. Исследование вопросов межзвездных перелетов сегодня носит инженерно-теоретический характер. Нельзя доказать невозможность осуществления межзвездных перелетов, но и никому не удалость доказать их осуществимость. Выход из ситуации не прост - надо предложить такую конструкцию межзвездных кораблей, которая была бы воспринята инженерно-научным сообществом, как реализуемая.

Полеты одиночных межзвездных кораблей, являющиеся правилом в фантастической литературе, исключаются, возможен перелет только эскадры кораблей, примерно с десяток аппаратов. Это требование безопасности, а кроме того - и обеспечение разнообразия жизни за счет общения между экипажами разных кораблей.

Поле завершения строительства эскадры она перемещается к запасенным запасам топлива, стыкуется с ними и направляется в полет. По всей видимости, разгон будет очень медленным и в течение года-двух более мобильные аппараты смогут забросить на корабли то, что позабыли, и снять с борта передумавших.

Перелет продлится 100-150 лет. Медленный разгон с ускорением примерно в сотую долю земного в течение десятка лет, десятки лет полета по инерции, и несколько более быстрое, чем разгон, торможение. Быстрый разгон существенно сократил бы время перелета, но он не возможен из-за неизбежно большой массы двигательной установки.

Перелет не будет столь насыщен космическими приключениями, как описано в фантастической литературе. Внешних угроз практически нет. Облака космической пыли, завихрения пространства, провалы во времени - вся эта атрибутика угрозы не представляет ввиду ее отсутствия. Даже тривиальные метеориты крайне редки в межзвездном пространстве. Основная внешняя проблема - галактическое космическое излучение, космические лучи. Это изотропный поток ядер элементов, имеющих большую энергию и, следовательно, высокую проникающую способность. На Земле от них нас защищает атмосфера и магнитное поле, в космосе, если полет длительный, надо принимать специальные меры, экранировать жилую зону корабля так, чтобы доза космического излучения не сильно превышала земной уровень. Здесь поможет простой конструктивный прием - запасы топлива (а они очень большие) располагаются вокруг жилых отсеков и экранируют их от радиации большую часть времени перелета.

Допустим, Земле конец. Солнце готово вот-вот взорваться, к планете приближается астероид размером с Техас. Крупные города населены зомби, а в сельской местности фермеры усиленно сажают кукурузу, потому что другие посевы гибнут. Нужно срочно покидать планету, но вот беда - в районе Сатурна никаких червоточин не обнаружено, а сверхсветовых двигателей из далёкой-далёкой галактики не завезли. До ближайшей звезды - больше четырёх световых лет. Сможет ли человечество достичь её, располагая современными технологиями? Ответ не столь очевиден.

Вряд ли кто-то станет утверждать, что глобальная экологическая катастрофа, которая поставит под угрозу существование всей жизни на Земле, может случиться лишь в кино. На нашей планете не раз происходили массовые вымирания, во время которых гибло до 90% существующих видов. Земля переживала периоды глобального оледенения, сталкивалась с астероидами, проходила через всплески вулканической активности.

Конечно, даже во время самых страшных катастроф жизнь никогда не исчезала полностью. Но того же не скажешь о господствовавших на тот момент видах, которые вымирали, освобождая дорогу другим. А кто сейчас господствующий вид? Вот-вот.

Вполне вероятно, что возможность покинуть родной дом и отправиться к звёздам в поисках нового сможет когда-нибудь спасти человечество. Однако вряд ли стоит уповать, что какие-нибудь космические благодетели откроют нам дорогу к звёздам. Стоит прикинуть, каковы наши теоретические возможности добраться до звёзд своими силами.

Космический ковчег

В первую очередь на ум приходят традиционные двигатели на химической тяге. В настоящий момент четырём земным аппаратам (все они были запущены ещё в 1970-х) удалось развить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему.

Наиболее быстрый из них, «Вояджер-1», за прошедшие с момента запуска 37 лет удалился от Земли на расстояние в 130 а.е. (астрономических единиц, то есть 130 расстояний от Земли до Солнца). Каждый год аппарат преодолевает примерно 3,5 а.е. Расстояние до Альфы Центавра - 4,36 световых лет, или 275 725 а.е. С такой скоростью аппарату потребуется почти 79 тысяч лет, чтобы добраться до соседней звезды. Мягко говоря, ждать придётся долго.

Фото Земли (над стрелочкой) с расстояния 6 миллиардов километров, сделанное «Вояджером-1». Это расстояние космический аппарат прошёл за 13 лет.

Можно найти способ лететь быстрее, а можно просто смириться и лететь несколько тысяч лет. Тогда конечной точки достигнут лишь далёкие потомки тех, кто отправился в путешествие. Именно в этом заключается идея так называемого корабля поколений - космического ковчега, представляющего собой рассчитанную на длительное путешествие замкнутую экосистему.

В фантастике есть множество различных сюжетов о кораблях поколений. О них писали Гарри Гаррисон («Пленённая Вселенная»), Клиффорд Саймак («Поколение, достигшее цели»), Брайан Олдисс («Без остановки»), из более современных писателей - Бернард Вербер («Звёздная бабочка»). Довольно часто далёкие потомки первых обитателей вообще забывают о том, откуда они вылетели и в чём цель их путешествия. Или даже начинают считать, что весь существующий мир сводится к кораблю, как, например, рассказывается в романе Роберта Хайнлайна «Пасынки Вселенной». Другой интересный сюжет показан в восьмом эпизоде третьего сезона классического «Звёздного пути», где экипаж «Энтерпрайза» пытается предотвратить столкновение корабля поколений, чьи обитатели забыли о своей миссии, и обитаемой планеты, к которой он направлялся.

Плюс корабля поколений заключается в том, что этот вариант не потребует принципиально новых двигателей. Однако нужно будет разработать самодостаточную экосистему, которая сможет существовать без поставок извне в течение многих тысяч лет. И не стоит забывать о том, что люди могут попросту поубивать друг друга.

Проведённый в начале 1990-х под замкнутым куполом эксперимент «Биосфера-2» продемонстрировал ряд опасностей, которые могут подстерегать людей при таких путешествиях. Это и быстрое разделение коллектива на несколько группировок, враждебно настроенных друг к другу, и неконтролируемое размножение вредителей, которое вызвало недостаток кислорода в воздухе. Даже обычный ветер, как оказалось, играет важнейшую роль - без регулярного раскачивания деревья становятся хрупкими и ломаются.

Решить многие проблемы длительного полёта поможет технология, погружающая людей в длительный анабиоз. Тогда ни конфликты не страшны, ни скука, да и система жизнеобеспечения потребуется минимальная. Главное - обеспечить её энергией на длительный срок. Например, с помощью ядерного реактора.

С темой корабля поколений связан весьма интересный парадокс под названием Wait Calculation («Расчётное ожидание»), описанный учёным Эндрю Кеннеди. Согласно этому парадоксу, в течение некоторого времени после отправки первого корабля поколений на Земле могут быть открыты новые, более быстрые способы передвижения, что позволит стартующим позже кораблям обогнать первоначальных поселенцев. Так что не исключено, что к моменту прибытия пункт назначения уже будет перенаселён далёкими потомками колонизаторов, которые отправились позднее.

Установки для анабиоза в фильме «Чужой».

Верхом на ядерной бомбе

Предположим, нас не устраивает, что до звёзд долетят потомки наших потомков, и мы хотим сами подставить лицо лучам чужого солнца. В этом случае не обойтись без космического корабля, способного разогнаться до скоростей, которые доставят его к соседней звезде за время меньше одной человеческой жизни. И тут поможет старая добрая ядерная бомба.

Идея подобного корабля появилась ещё в конце 1950-х. Космический аппарат предназначался для полётов внутри Солнечной системы, однако его вполне можно было бы использовать и для межзвёздных путешествий. Принцип его работы таков: за кормой устанавливают мощную бронированную плиту. Из космического аппарата в направлении, противоположном полёту, равномерно выбрасываются маломощные ядерные заряды, которые подрываются на небольшом (до 100 метров) расстоянии.

Заряды сконструированы таким образом, чтобы большая часть продуктов взрыва направлена в хвост космического корабля. Отражающая плита принимает на себя импульс и передаёт его кораблю через систему амортизаторов (без неё перегрузки будут губительны для экипажа). От повреждения световой вспышкой, потоками гамма-излучения и высокотемпературной плазмой отражающую плиту защищает покрытие из графитовой смазки, которое заново распыляется после каждого подрыва.

Проект NERVA - пример ядерного ракетного двигателя.

На первый взгляд подобная схема кажется безумной, но она вполне жизнеспособна. Во время одного из ядерных испытаний на атолле Эниветок в 9 метрах от центра взрыва были размещены покрытые графитом стальные сферы. После испытания они были найдены неповреждёнными, что доказывает эффективность графитовой защиты для корабля. Но подписанный в 1963 году «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой» поставил крест на этой идее.

Артур Кларк хотел оснастить космический корабль Discovery One из фильма «Космическая одиссея 2001 года» чем-то вроде ядерно-взрывного двигателя. Однако Стэнли Кубрик попросил его отказаться от идеи, испугавшись, что зрители сочтут это пародией на его фильм «Доктор Стрейнджлав, или Как я перестал бояться и полюбил атомную бомбу».

Какую же скорость можно развить с помощью серии ядерных взрывов? Больше всего сведений существует о проекте взрыволёта «Орион», который разрабатывался в конце 1950-х в США при участии учёных Теодора Тейлора и Фримена Дайсона. 400 000-тонный корабль планировалось разогнать до 3,3% скорости света - тогда полёт до системы Альфы Центавра продлился бы 133 года. Однако, согласно нынешним оценкам, подобным способом можно разогнать корабль до 10% скорости света. В таком случае полёт продлится примерно 45 лет, что позволит экипажу дожить до прибытия в пункт назначения.

Конечно, постройка такого корабля - весьма недешёвое дело. По оценке Дайсона, на создание «Ориона» потребовалось бы примерно 3 триллиона долларов в современных ценах. Но если мы узнаем, что нашей планете будет грозить глобальная катастрофа, то, вероятно, именно корабль с ядерно-импульсным двигателем станет последним шансом человечества на выживание.

Газовый гигант

Дальнейшим развитием идей «Ориона» стал проект беспилотного корабля «Дедал», который разрабатывался в 1970-х годах группой учёных из Британского межпланетного общества. Исследователи задались целью спроектировать беспилотный космический аппарат, способный в течение человеческой жизни достичь одной из ближайших звёзд, провести научные исследования и передать на Землю полученную информацию. Главным условием исследования было использование в проекте либо существующих, либо предвидимых в ближайшее время технологий.

Целью полёта была выбрана находящаяся от нас на расстоянии 5,91 светового года звезда Барнарда - в 1970-е годы считалось, что вокруг этой звезды вращается несколько планет. Сейчас мы знаем, что в данной системе нет планет. Разработчики «Дедала» нацелились на создание двигателя, который мог бы доставить корабль до пункта назначения за время, не превышающее 50 лет. В итоге они пришли к идее двухступенчатого аппарата.

Необходимое ускорение обеспечивала серия маломощных ядерных взрывов, происходящих внутри специальной двигательной установки. В качестве топлива использовались микроскопические гранулы из смеси дейтерия с гелием-3, облучаемые потоком высокоэнергетических электронов. Согласно проекту, в двигателе должно было происходить до 250 взрывов в секунду. Соплом служило мощное магнитное поле, создаваемое силовыми установками корабля.

По плану первая ступень корабля работала в течение двух лет, разгоняя корабль до 7% скорости света. После этого «Дедал» сбрасывал отработанную двигательную установку, избавляясь от большей части своей массы, и запускал вторую ступень, которая позволяла ему разогнаться до окончательной скорости в 12,2% световой. Это позволило бы достичь звезды Барнарда через 49 лет после запуска. Ещё 6 лет ушло бы на передачу сигнала на Землю.

Полная масса «Дедала» составляла 54 тысячи тонн, из которых 50 тысяч приходилось на термоядерное горючее. Однако предполагаемый гелий-3 чрезвычайно редко встречается на Земле - зато его полно в атмосферах газовых гигантов. Поэтому авторы проекта предполагали добыть гелий-3 на Юпитере с помощью «плавающего» в его атмосфере автоматизированного завода; на весь процесс добычи ушло бы примерно 20 лет. На той же орбите Юпитера предполагалось осуществить окончательную сборку корабля, который бы затем стартовал к другой звёздной системе.

Самым сложным элементом во всей концепции «Дедала» была именно добыча гелия-3 из атмосферы Юпитера. Для этого нужно было долететь до Юпитера (что тоже не так-то легко и быстро), основать базу на одном из спутников, построить завод, где-то хранить топливо… И это уже не говоря о мощных радиационных поясах вокруг газового гиганта, которые дополнительно усложнили бы жизнь технике и инженерам.

Ещё одна проблема состояла в том, что «Дедал» не имел возможности погасить скорость и выйти на орбиту звезды Барнарда. Корабль и выпущенные им зонды просто бы прошли мимо звезды по пролётной траектории, преодолев всю систему за несколько дней.

Сейчас международная группа из двадцати учёных и инженеров, действующая под эгидой Британского межпланетного сообщества, работает над проектом корабля «Икар». «Икар» - своеобразный «римейк» Дедала, учитывающий накопленные за последние 30 лет знания и технологии. Одно из основных направлений работы - поиск других видов топлива, которое можно было бы добыть и на Земле.

Со скоростью света

Можно ли разогнать космический корабль до скорости света? Эту задачу можно решить несколькими способами. Наиболее перспективный из них - аннигиляционный двигатель на антиматерии. Принцип его действия заключается в следующем: антиматерия подаётся в рабочую камеру, где она входит в соприкосновение с обычным веществом, порождая управляемый взрыв. Ионы, возникшие в процессе взрыва, выбрасываются через сопло двигателя, создавая тягу. Из всех возможных двигателей аннигиляционный теоретически позволяет достичь наибольших скоростей. Взаимодействие материи и антиматерии высвобождает колоссальное количество энергии, а скорость истечения образующихся в ходе этого процесса частиц близка к световой.

Но тут встаёт вопрос добычи топлива. Само по себе антивещество уже давно перестало быть фантастикой - учёным впервые удалось синтезировать антиводород ещё в 1995 году. Но добыть его в достаточных количествах невозможно. В настоящее время антиматерию можно получить лишь с помощью ускорителей частиц. При этом количество создаваемого ими вещества измеряется мизерными долями граммов, а его стоимость составляет астрономические суммы. На одну миллиардную грамма антивещества учёным из Европейского центра ядерных исследований (того самого, где создали Большой адронный коллайдер) пришлось потратить несколько сотен миллионов швейцарских франков. С другой стороны, стоимость производства будет постепенно уменьшаться и в будущем может достичь куда более приемлемых значений.

Кроме того, придётся придумать способ, позволяющий хранить антивещество - ведь при соприкосновении с обычной материей оно мгновенно аннигилируется. Одно из решений - охлаждать антивещество до сверхнизких температур и использовать магнитные ловушки, не позволяющие ему соприкасаться со стенками бака. На данный момент рекордное время хранения антивещества составляет 1000 секунд. Не годы, конечно, но с учётом того, что в первый раз антивещество удалось удержать лишь на 172 миллисекунды, прогресс есть.

И даже быстрее

Многочисленные фантастические фильмы приучили нас к тому, что добраться до других звёздных систем можно куда быстрее, чем за несколько лет. Достаточно включить варп-двигатель или гиперпространственный привод, откинуться поудобнее в кресле - и уже через несколько минут оказаться на другом краю галактики. Теория относительности запрещает путешествия со скоростями, превышающими скорость света, но в то же время оставляет лазейки, позволяющие обойти эти ограничения. Если бы могли разорвать или растянуть пространство-время, то смогли бы путешествовать быстрее света, не нарушая никаких законов.

Разрыв пространства более известен как кротовая нора, или червоточина. Физически она представляет собой тоннель, связывающий две удалённые области пространства-времени. Почему бы не использовать такой тоннель для путешествия в дальний космос? Дело в том, что создание подобной кротовый норы требует наличия в разных точках вселенной двух сингулярностей (это то, что находится за горизонтом событий чёрных дыр, - фактически гравитация в чистом виде), которые смогут разорвать пространство-время, создав тоннель, позволяющий путешественникам «срезать» путь через гиперпространство.

Кроме того, для поддержания подобного тоннеля в устойчивом состоянии необходимо, чтобы он был заполнен экзотической материей с отрицательной энергией, - а существование подобной материи до сих пор не доказано. В любом случае, создать кротовую нору по силам лишь сверхцивилизации, которая на много тысяч лет будет опережать нынешнюю в развитии и чьи технологии с нашей точки зрения будут похожи на волшебство.

Второй, более доступный вариант - «растягивание» пространства. В 1994 году мексиканский физик-теоретик Мигель Алькубьерре предположил, что можно изменить его геометрию, создав волну, сжимающую пространство впереди корабля и расширяющую его сзади. Таким образом звездолёт окажется в «пузыре» искривлённого пространства, которое само будет двигаться быстрее света, благодаря чему корабль не нарушит фундаментальных физических принципов. По словам самого Алькубьерре, .

Правда, сам учёный счёл, что реализовать подобную технологию на практике будет невозможно, так как для этого потребуется колоссальное количестве массы-энергии. Первые вычисления давали значения, превышающие массу всей существующей Вселенной, последующие уточнения уменьшили её до «всего лишь» юпитерианской.

Но в 2011 году Гарольд Уайт, возглавляющий исследовательскую группу Eagleworks при NASA, провёл расчёты, которые показали, что если изменить некоторые параметры, то для создания пузыря Алькубьерре может потребоваться куда меньше энергии, чем считалось ранее, и перерабатывать целую планету уже не потребуется. Сейчас группа Уайта прорабатывает возможность «пузыря Алькубьерре» на практике.

Если у экспериментов будут результаты, то это станет первым маленьким шажком к тому, чтобы создать двигатель, позволяющий путешествовать в 10 раз быстрее скорости света. Разумеется, космический аппарат, использующий пузырь Алькубьерре, отправится в путешествие через много десятков, а то и сотен лет. Но сама перспектива того, что такое действительно возможно, уже захватывает дух.

Полёт «Валькирии»

Практически все предлагаемые проекты звездолётов имеют один существенный недостаток: они весят десятки тысяч тонн, и их создание требует огромного количество запусков и сборочных операций на орбите, что увеличивает стоимость постройки на порядок. Но если человечество всё же научится получать большое количество антиматерии, у него появится альтернатива этим громоздким конструкциям.

В 1990-х годах писатель Чарльз Пелегрино и физик Джим Пауэлл предложили проект звездолёта, известный как «Валькирия». Его можно описать как нечто вроде космического тягача. Корабль представляет собой связку из двух аннигиляционных двигателей, соединённых между собой сверхпрочным тросом длиной 20 километров. В центре связки находятся несколько отсеков для экипажа. Корабль использует первый двигатель, чтобы набрать скорость, близкую к световой, а второй - чтобы погасить её при выходе на орбиту вокруг звезды. Благодаря использованию троса вместо жёсткой конструкции масса корабля составляет всего 2100 тонн (для сравнения, масса МКС - 400 тонн), из которых 2000 тонн приходятся на двигатели. Теоретически такой корабль может разогнаться до скорости в 92% от скорости света.

Модифицированный вариант данного корабля, названный Venture Star, показан в фильме «Аватар» (2011), одним из научных консультантов которого был как раз Чарльз Пелегрино. Venture Star отправляется в путешествие, разгоняясь при помощи лазеров и 16-километрового солнечного паруса, после чего тормозит у Альфы Центавра с помощью двигателя на антиматерии. На обратном пути последовательность меняется. Корабль способен разогнаться до 70% скорость света и долететь до Альфа Центавра менее чем за 7 лет.

Без топлива

Как существующие, так и перспективные ракетные двигатели имеют одну проблему - топливо всегда составляет большую часть их массы на старте. Однако есть проекты звездолётов, которым вообще не нужно будет брать с собой топливо.

В 1960 году физик Роберт Бассард предложил концепцию двигателя, который использовал бы находящийся в межзвёздном пространстве водород в качестве горючего для термоядерного двигателя. К сожалению, несмотря на всю привлекательность идеи (водород - самый распространённый элемент во Вселенной), у неё есть ряд теоретических проблем, начиная от способа сбора водорода и заканчивая расчётной максимальной скоростью, которая вряд ли превысит 12% световой. А значит, до системы Альфа Центавра придётся лететь минимум полвека.

Другая интересная концепция - применение солнечного паруса. Если построить на земной орбите или на Луне огромный сверхмощный лазер, то его энергию можно было бы использовать, чтобы разогнать оснащённый гигантским солнечным парусом звездолёт до достаточно больших скоростей. Правда, по расчётам инженеров, чтобы придать пилотируемому кораблю массой 78 500 тонн скорость в половину световой, потребуется солнечный парус диаметром в 1000 километров.

Ещё одна очевидная проблема звездолёта с солнечным парусом заключается в том, что его нужно как-то затормозить. Одно из её решений - при подлёте к цели выпустить позади звездолёта второй, меньший по размерам парус. Основной же отсоединится от корабля и продолжит самостоятельное путешествие.

***

Межзвёздное путешествие - очень сложное и дорогостоящее предприятие. Создать корабль, способный за относительно небольшой срок покрыть космическое расстояние, - одна из самых грандиозных задач, стоящих перед человечеством в будущем. Конечно, это потребует усилий нескольких государств, если не всей планеты. Сейчас это кажется утопией - у правительств слишком много забот и слишком много способов потратить деньги. Полёт на Марс в миллионы раз проще полёта к Альфе Центавра - и тем не менее вряд ли сейчас кто-то рискнёт назвать год, когда он всё же состоится.

Оживить работы в этом направлении может или глобальная опасность, грозящая всей планете, или же создание единой планетарной цивилизации, которая сможет преодолеть внутренние склоки и захочет покинуть свою колыбель. Время для этого ещё не пришло - но это не значит, что оно не придёт никогда.

Наш читатель Никита Агеев спрашивает: в чем основная проблема межзвездных перелетов? Ответ, как и , потребует большой статьи, хотя на вопрос можно ответить и единственным символом: c .

Скорость света в вакууме, c, равна примерно тремстам тысячам километров в секунду, и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли бы экипажу автономно жить в космосе столько времени — космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик картриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении со скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенных в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Космическая эра началась 4 октября 1957 года. Вряд ли стоит еще и еще раз описывать подробности этого дня. Они стали каноническими. Важнее сам факт: в космос, на орбиту Земли, Советским Союзом был запущен первый в мире искусственный спутник.

Пройдемся по первым ступеням пока еще немногочисленных этапов освоения выхода в космическое пространство. Нам это нетрудно сделать, потому что многие из них отмечены цветами нашей страны.

2 января 1959 года первая космическая ракета «Мечта» ушла с советского космодрома в сторону Луны и стала первой искусственной планетой солнечной системы.

12 сентября 1959 года вторая космическая ракета «Луна-2» доставила на поверхность спутника Земли первый вымпел с изображением герба Советского Союза. Первый заявочный столб в космосе.

12 февраля 1961 года многоступенчатая ракета вывела на орбиту второй советский тяжелый спутник Земли, с которого в тот же день стартовала управляемая с Земли космическая ракета. Она вывела на траекторию к Венере автоматическую межпланетную станцию «Венера-1».

1 ноября 1962 года советская автоматическая станция «Марс-1» отправилась к нашему внешнему соседу - планете Марс.

10 ноября 1968 года советская автоматическая станция «Зонд-6» полетела к Луне, обогнула ее и вернулась на Землю не просто камнем из пространства, а используя аэродинамические свойства самого корабля. Первый планетолет.

23 июля 1969 года. Специальная кабина американского космического корабля «Аполлон-11» прилунилась на поверхности естественного спутника Земли, и на Луну впервые ступила нога человека.

Первым вышел из кабины астронавт Нейл Армстронг. За ним последовал и его товарищ по полету Эдвин Олдрин.

Это ступени этапов. За каждой из них - длинный ряд отработок, совершенствований, целая лестница закрепления результатов. Применяя оптимистическую экстраполяцию этих начинаний, легко поддаться искушению высчитать год и день отправки первого межзвездного корабля. Давайте и мы попробуем составить «гороскоп астронавтики».

2. Расстояние, время, скорость, относительность

Земля - песчинка космоса: привычное сравнение для уничижения рода человеческого. А что, если действительно представить себе нашу планету уменьшенной до размеров песчинки? Можно, правда, пойти по другому пути. Представить себя выросшим до размеров этакого «супермикромегаса», для которого Земля - песчинка. В принципе разницы никакой - все в мире относительно, а кое-кому из читателей, может быть, второй вариант придется больше по вкусу.

Так или иначе Земля - песчинка. Масштаб 1:180 миллиардам. Тогда Солнце своими размерами не превзойдет горошину. А расстояние между песчинкой и горошиной не должно быть больше метра. Тут же, в пределах нескольких шагов, лежат орбиты планет, на которые уже припланетились первые земные планетолеты. Но нас интересуют звезды. Каким будет в наших масштабах расстояние… ну, хоть до ближайшей - Проксимы Центавра?

Не оглядывайтесь вокруг, не влезайте на дерево, не садитесь на велосипед. Следующая «горошина» затерялась примерно в 220 километрах от нашей «песчинки», поди найди! Сотни километров - и песчинки с горошинами. А ведь это Проксима! Ближайшая! До нее, астрономы считают, рукой подать, всего 40 420 000 000 000 000 километров - пустяк. В том же масштабе расстояние до самой популярной соседней галактики - Туманности Андромеды, равно… радиусу земной орбиты! И все это опять для песчинок с горошинами.

Такие расстояния заставляют задумываться. Ведь для того чтобы современной ракете преодолеть путь до Проксимы Центавра, ей придется лететь 76 тысяч лет. Право, такое долгое путешествие по однообразной космической пустыне может и поднадоесть. Единственный способ сократить расстояние, а следовательно, и сроки полетов - увеличивать скорость. Но до каких пор? Очевидно, до максимально возможной. А это - скорость света!



Луч мчится от Проксимы Центавра до Земли 4,29 года. Скорость света - физический предел - 300 тысяч километров в секунду. Больше не бывает.

Ну, а если цель поездки отстоит от Солнца, например, на 160 световых лет, как Спика из созвездия Девы, или Бетельгейзе - на 650 световых лет, как быть тогда? Ведь одной человеческой жизни на такую поездку все равно не хватит. А значит, отдаленным звездам вряд ли дождаться скоро земных туристов!

И тут мы вступаем в царство относительности. Земные законы в этом царстве трещат по всем швам, а привычные физические формулы приобретают релятивистскую поправку. (Впрочем, раз уж мы заговорили о звездном туризме, то не следует ли говорить не «релятивистский», а «релятивистический»? Ведь пустил же какой-то грамотей термин «туристический» вместо «туристский».)

А теперь пришло время взглянуть на эти формулы. К ним придется привыкнуть пассажиру звездолета, ничего не поделаешь. А приводятся они здесь еще по двум причинам: во-первых, сами по себе они поучительны и наглядны, способствуя тем самым поднятию эрудиции; во-вторых, без формул сейчас не обходится ни одна книжка вообще, даже если в ней говорится о воспитании щенка легавой собаки. Наконец, немаловажную роль сыграло и то, что приводимые уравнения встречаются сегодня не менее часто, чем фольклорные фрески в общественных местах. И потому привести их в книжке автору ничего не стоит.



Начинать, конечно, надо с того, что самым драматическим и захватывающим утверждением теории относительности является так называемый «парадокс близнецов». Смысл его в том, что, когда скорость ракеты приближается к световой, часы участников полета начинают безнадежно отставать от земных. При этом, правда, все авторы стыдливо обходят вопрос о справедливости данного утверждения для ускорений и замедлений движения, для полетов по прямой или по замкнутой кривой. Не будем и мы считать себя умнее других. В конце концов на звезды пока никто всерьез не собирается, а Эйнштейн, увы, умер.

Итак, в ракете, которая, стартовав с Земли, летит с субсветовой скоростью, время тянется по закону:

А на покинутой и безутешной Земле время, то самое Т 0 , бежит куда быстрее. И чем ближе подбираемся мы к скорости света, тем медленнее течет ракетное время, грозясь в пределе остановиться вовсе. Но зато при скорости звездолета, равной 0,996 от скорости света С, то есть 298 500 километров в секунду, 10 земных лет превращаются для астронавтов в один год!

Это же прекрасно!

Это открывает перед нами не только звезды нашей системы, но и всю вселенную. Только погоняй звездолет - и пусть себе календарь на Земле отщелкивает столетия в секунду. Надо только поскорее построить такой быстроходный корабль.

3. Когда построят звездолет?

Скорость движения ракеты определяется вылетающими из сопла частицами сгоревшего топлива. Если же из ракетных дюз заставить вырваться световые кванты или фотоны, то скорость ракет будет приближаться к физическому пределу! Значит, строить надо только фотонный звездный корабль!

Чтобы не занимать места на описание принципа действия и конструкции звездолета, автор предлагает читателю сделать это самостоятельно. Тем более что, если уважаемый читатель и присочинит что-либо от себя, большой беды не будет. Впрочем, мы забегаем вперед.

Для оценки сроков, когда возможным станет осуществление такого строительства, надо прежде всего прикинуть объем лайнера, то есть вычислить минимальную полезную массу звездолета. Сюда войдет все, чем комплектуется космический корабль, включая и живой вес экипажа. Все, за исключением горючего.




Последним «криком техники» на Земле являются, пожалуй, танкеры-гиганты водоизмещением 100 тысяч тонн. Звездному кораблю предстоит дальний и долгий путь, поэтому возьмем его размеры, не жадничая, тоже 100 тысяч тонн! Тем более что горючего понадобится, наверное, довольно много. Кстати, о горючем. Заботы о нем - не наше дело. Считаем, что физики получили супер-экстра-горючее, которое без остатка переходит в излучение, научились его хранить в магнитных или каких-либо других бутылках и построили для этого горючего двигатель, способный переваривать энергию, примерно равную энергии миллиона атомных бомб, ежесекундно и при этом оставаться целым. Наша задача - определить, «сколько горючего надо», и залить его в баки. Ах, черт возьми, снова вмешивается Эйнштейн! По мере приближения скорости к световой, начинает расти масса. Вот ее уравнение:

Разгоняясь, ракета будет тяжелеть и тяжелеть. Значит, увеличится и расход горючего. Его придется подбрасывать в топку сначала в десять, потом в сто, потом в тысячи раз больше. А ведь предстоит еще торможение при прибытии на место. Потом снова разгон и снова торможение на обратном пути. Короче говоря, по самым скромным расчетам, для разгона космического корабля массой в 100 тысяч тонн до скорости 0,995 С, вес топлива должен примерно в миллион (!) раз превзойти полезную массу конструкции и составить 100 000 000 000 тонн. Еще немного - и реактивный двигатель проще всего будет приделать прямо к земному шару.

Э, да я вижу, наш отряд строителей сильно поредел. Испугались первых трудностей? Позор! То ли еще будет дальше.

Мы продолжим мечтать. Мечтать - это так прекрасно, так возвышенно!!! В конце концов не все ли равно, как будут обойдены конструктивные трудности? Важно верить, что это сделано будет! Тем более что идея прекрасна! Тогда - верхом на идею, и вперед!

4. Рифы космоса

Нет ни одного истинного приключенческого космически-фантастического романа, герои которого не встретились бы нос к носу с метеоритом. В ином случае пустынный космос не даст никаких острых ситуаций, и жанр погибнет. (Автор говорит об этом со знанием дела, так как, написав несколько фантастических опусов, он неоднократно исправно сталкивал своих героев с метеоритами самых разных размеров.) И это не шутка. Многие даже не подозревают, какую опасность представляют собой метеориты, беспорядочно носящиеся за пределами атмосферы.

В 1932 году метеорит пробил атмосферу и, счастливо избежав полного сгорания, долетел до Земли. Выбрал место падения - Токио и… запутался в кимоно молодой японки. Хорошо, что этот опыт не распространился на страны Европы в наши дни. Юбки современных девушек вряд ли обеспечили бы космическому гостю благополучную посадку.

Известны случаи, когда метеориты падали на крыши почему-то в основном соборов. Метеориты причиняли ущерб скотоводству, убивая иногда домашних животных. А однажды небесный камень грохнулся прямо в корыто прачки. Это было еще до широкого внедрения стиральных машин и механических прачечных.

Именно за счет космического мусора, сыплющегося на поверхность нашей планеты, Земля ежедневно прибавляет в весе от десяти до ста тысяч тонн.

Скорость метеоритов, с которыми встречается Земля, различна. Она колеблется от 11 до 80 километров в секунду. Если такой камешек диаметром полсантиметра угодит в спутник, то он разворотит дыру даже в обшивке из стали толщиной в 12 миллиметров. Правда, расчеты вероятности такой встречи не могут не придать отваги даже пессимистам. В ближнем космосе встреча корабля с таким метеоритом (массой примерно в 3,5 грамма) может произойти не чаще одного раза в 30–40 тысяч лет! Можно предположить, что в межзвездных просторах вероятность встречи еще меньше. Правда, с уменьшением размеров метеорита эта вероятность растет примерно в квадратичной зависимости.

Так, при диаметре частицы вещества в 1 миллиметр две встречи подряд уже разделяются интервалом всего в 350–400 лет. При диаметре 0,5 миллиметра неприятность возможна уже через каждые 15 лет. А встречи с песчинками размером в 0,25 миллиметра могут происходить каждые четыре года.

Все вышеприведенные рассуждения касались обычных спутников или, в лучшем случае, межпланетных кораблей, путешествующих по солнечной системе. Но ведь мы летим к звездам! Опять Эйнштейн, и опять неприятности. Формула кинетической энергии тела, летящего со субсветовой скоростью, выглядит так:

где m o - масса покоя. Очень интересные расчеты сделал советский физик Сергей Михайлович Рытов. Он рассматривает встречу звездолета, мчащегося со скоростью 260 тысяч километров в секунду, с микроскопической пылинкой массой в один миллиграмм. Энергии, выделившейся при столкновении, достаточно, чтобы в буквальном смысле этого слова «испарить» 10 тонн железа. Но это еще не самое страшное. Хуже то, что при таких скоростях энергия атомных частиц в движущихся навстречу кораблю микрометеоритах значительно больше энергии связи атомов в кристаллической решетке. Значит, метеорит врежется в корпус корабля не как единый кусок вещества, способный прострелить звездолет насквозь, а как шквал тяжелых космических частиц. Проникнув в металл обшивки всего на несколько сантиметров, они там, в глубине, отдадут всю свою огромную энергию, вызвав тепловой взрыв.

Так одна-единственная крупинка вещества массой в один миллиграмм взорвет весь огромный корабль.

Но будем оптимистами. Ведь встреча с такой частицей возможна раз в полтораста лет. Авось проскочим. Ведь в основном-то пустота пуста! По современным данным, средняя плотность межзвездного пылевого вещества в Галактике около 10 -10 грамма в кубическом километре - ничтожна. Но при скорости в 260 тысяч километров в секунду каждый квадратный метр лобовой поверхности звездолета за час пройдет около 1800 кубических километров и встретит при этом наверняка 0,00018 миллиграмма распыленного вещества. Если микрометеорит массой в 1 миллиграмм испаряет 10 тонн железа, то крупица в две тысячные доли миллиграмма уж два-то килограмма корпуса наверняка сожрет. И так ежечасно. Невидимая, почти неощутимая космическая пыль будет, как наждаком, точить корпус звездолета такими темпами, что от всей полезной массы в 100 тысяч тонн через пять с небольшим лет не останется ни грамма.

А ведь мы забыли еще межзвездный газ. Водорода в пространстве больше, чем пыли. В среднем - один атом на один кубический сантиметр.

Для звездолета с субсветовой скоростью этот разреженный газ превратится в густой поток быстрых частиц высокой энергии. Ударяясь о корпус корабля, они породят ливень жестких рентгеновых лучей, от которых спрятаться можно будет только за толстенными бетонными стенами. Иначе наши астронавты погибнут, не успев насладиться необычными видами, которые откроются перед ними в иллюминаторах корабля. А посмотреть будет на что, вы в этом убедитесь, прочитав следующий раздел главы.




Однако чтобы закончить этот «жизнерадостный» перечень неожиданностей и препон, которые смелым людям нужно будет преодолеть, автор призывает бодро воскликнуть в духе Маргариты Алигер: «И все-таки я верю!..» Жаль только, что вера в науке то же, что дрова в двигателе космической ракеты.

Хотя не исключено, что придет время, и человечество, если ему удастся до этого времени дожить, вырвется к звездам. Но произойдет это таким способом, до понимания которого нам так же далеко сегодня, как современникам Гиппарха было далеко до наших с вами рассуждений.

5. Проблемы релятивистской астронавигации

Одним из самых противных испытаний, которым подвергается летчик, а сейчас космонавт, как это показывают в кино, является карусель. Мы, летчики недавнего прошлого, в свое время называли ее «вертушкой» или «сепаратором». Тех, кто не проходил испытания на центрифуге, отстраняли от полетов. Мудрый читатель, конечно, знает, что так тренируется вестибулярный аппарат. И хотя у представителей воздушной специальности оный аппарат, безусловно, оттренирован, летать вверх ногами или кувыркаться во всех мыслимых степенях свободы никому удовольствия не доставляет. Мы не говорим уже о том, что направить кувыркающуюся ракету точно в цель - дело в высшей степени безнадежное.

Для предотвращения неприятностей воздушные (и безвоздушные) транспортные средства снабжаются ограничителями свободы.

На корабле «Восток», вынесшем за пределы воздушной оболочки Земли первого человека, стоял целый комплекс оптико-гироскопических систем ориентирования. Гироскоп задавал направление одной из осей; автоматы, занимающиеся поиском Солнца, поворачивали корабль относительно центра тяжести и удерживали его в заданном направлении. Первый полет Ю. Гагарина прошел успешно.

Иначе было с автоматической межпланетной станцией «Венера-1». Станция держала связь с Землей при помощи остронаправленной антенны. Такие антенны представляют собой параболоиды вращения разных диаметров и посылают радиоволны узким пучком. Поддерживать точное направление помогала сложная система астроориентации. И вот примерно в середине полета радиосвязь со станцией прервалась. В чем дело?

Выяснить причину помогла старинная дружба, связывающая советских астрономов и их английских коллег. Англичане уже давно помогают нам вести наблюдения за нашими космическими летательными аппаратами, пользуясь уникальной аппаратурой на обсерватории Джодрелл Бэнк. Так вышло и на этот раз. После того как у всех нас лопнуло терпение вместе с надеждами снова услышать голос «Венеры-1», англичане все еще упорно ждали. И национальная черта не подвела. Правда, плюс к английскому терпению у них был и лучший в мире по тем временам радиотелескоп. Факт тот, что английские астрономы поймали снова нашу станцию. Но поймали так кратковременно и вскользь, что стало ясно: вышла из строя система ориентации и станцию мотает в разные стороны.

Средства астронавигации при межпланетных перелетах - это едва ли не главное (наряду с тремястами тысячами других не менее главных деталей, составляющих начинку современной ракеты). Отклонение от курса на доли процента уведет даже межпланетный корабль далеко от цели. А как будет чувствовать себя штурман звездолета, набравшего субсветовую скорость? Что, опять Эйнштейн? Нет, на этот раз мы хоть и воспользуемся выводами специальной теории относительности, но это будет касаться той ее части, которая была подготовлена раньше Лоренцем. Здесь речь идет о преобразованиях Лоренца, связывающих координаты и время неподвижной системы (х, у, z и t) с соответствующими величинами для летающего звездолета (х′, у′, z′ и t′). Если направить ось х по курсу корабля, то формулы для преобразования примут вид:

Из-за этих преобразований для наблюдателя, движущегося со скоростью, близкой к скорости света, привычные координаты неподвижных звезд неузнаваемо изменятся. Перед носом ракеты звезды словно сбегутся, столпятся в кучу по курсу звездолета, а за кормой, наоборот, далеко разойдутся друг от друга.

По расчетам профессора С. М. Рытова, при скорости в 260 тысяч километров в секунду вся передняя полусфера звездного неба сместится вперед и заполнит конус с углом раствора всего в 30 градусов. И чем ближе будет скорость к световой, тем теснее будут толпиться звезды перед носом корабля. Так, при достижении скорости, равной 0,95 С, передняя полусфера сожмется уже в конус с углом раствора всего 18 градусов.



Но этого еще мало. Изменится спектральный состав излучения звезд. Помните эффект Допплера и наш эксперимент с лодкой, идущей против волн? Так вот, звезды, расположившиеся впереди по курсу звездолета, «поголубеют», а оказавшиеся за кормой по той же причине начнут «краснеть». При этом яркость впереди лежащих светил возрастет, а оставшихся сзади - уменьшится.

Представьте себя на минутку в положении штурмана. Поседеешь, ей-богу! А до штурмана - конструктору в пору повеситься.

Если и теперь упрямый читатель не сделал для себя определенных выводов, к которым его бережно вел автор, то последнему остается только широко развести руками. Ему, автору, самому до смерти бы хотелось полететь. Желание-то у него есть. Но вот насчет возможностей… Нет, мы начали нашу последнюю главу широким заголовком: «Полет к звездам…» и поставили многоточие. Пришла пора снять точки, написать слово НЕВОЗМОЖЕН и закрыть кавычки.

А как же фантастика?..

Во-первых, автор должен заявить со всей ответственностью, что лично он фантастику любит! Не меньше любит он и приключенческую литературу и даже, стыдно признаться, детектив. Порукой тому не только его собственные рассказы, но даже эта книга, которую он изо всех сил старался строить по детективным канонам: «Вот-вот откроется окончательная истина… Ан нет!.. И снова дежурные гипотезы, погоня за доказательствами, ошибки и движение вперед».



Автор уже много раз оправдывался в том, что он далек от мысли подвергать сомнениям основные принципы и принципиальные возможности. Ему только хотелось бы предостеречь читателя от слишком поспешного «инженерного» подхода к решению некоторых «фотонных» проблем, а с другой стороны - от чрезмерной горячности в восклицаниях: «Верую!» Правда, а как же быть все-таки с литературой?

Так ведь и тысячу лет назад существовали сказки об огнедышащих драконах и летающих колесницах. Думаете, в них так уж и верили? Вряд ли. Но от этого сказки не становились менее интересными. Помните: «Сказка - ложь, да в ней намек, добрым молодцам урок»?

Поколения людей, смотрящих на далёкие звёзды, могли лишь задаваться вопросами о существовании там планет и условий для той жизни, которую они знали. За последние 25 лет произошла революция в поиске планет, их известно уже тысячи, их наличие подтверждено, и среди них есть даже потенциально обитаемые миры, похожие на Землю. Но сможем ли мы туда добраться? Читатель спрашивает:

Как вы думаете, возможны ли межзвёздные перелёты (для какой угодно цивилизации). По мне, так все возможные решения – это билеты в один конец.

Я однозначно считаю межзвёздные путешествия возможными. Но существуют и ограничения, в зависимости от выбираемого нами способа.



Главный двигатель Шаттла во время тестового пуска, 1981

1) Обычные технологии.

Если использовать сегодняшние достижения, мы, теоретически, могли бы достичь другой звезды. Построить достаточно крупный корабль, способный поддерживать жизнь мини-цивилизации – корабль поколений – достичь скоростей в десятки или сотни км/с, выращивать свою еду и рециркулировать воду. В качестве варианта можно разработать криогенную технологию замораживания и размораживания, при помощи которой людей, растения и другие живые существа можно транспортировать в состоянии приостановленного функционирования, и оживлять по прибытию на место.


Сериал «Lost In Space», 1965-1968

Обычные проблемы вроде столкновения с межпланетными и межзвёздными объектами, астероидами или планетами, на самом деле практически не важны. Таких объектов хоть и много, но плотность их наличия настолько мала, что даже столкновения звёзд чрезвычайно редки, даже на масштабах в миллионы лет. Такое путешествие заняло бы сотни тысяч лет для достижения ближайшей звёздной системы, и выглядит реальным.

Но это действительно билет в один конец, и решение неудовлетворительное.


Домашний термоядерный реактор, www.tidbit77.blogspot.com

2) Технологии будущего, основанные на известной физике.

Если мы захотим рассмотреть другие технические возможности, то найдём способы и получше. Например:

Улучшение топлива. Вместо химических ракет, преобразующих 0,001% массы в энергию, используемую для разгона, можно использовать ядерное топливо (с эффективностью в 1%), или даже топливо на антиматерии, с эффективностью в 100%.

Улучшение тяги. Если на борту корабля можно будет перевозить большое количество материи и антиматерии в качестве топлива, можно будет продолжать разгон в путешествии. Поскольку люди выдерживают, и даже предпочитают, тягу, схожую с гравитацией на Земле, можно направить корабль в сторону нашей цели, запустить двигатели на 9,8 м/с 2 , а на половине пути развернуть двигатели и запустить их снова, снижая скорость до момента прибытия.

Временные улучшения. Такое передвижение приблизит нас к скорости света всего через несколько лет ускорения, мы сможем долететь практически до любой звезды всего за 20-40 лет путешествия.

Это было бы круто, и не потребовало бы строительства корабля поколений. Конечно, кораблю нужно пережить путешествие на очень больших скоростях через межзвёздную среду, но достаточно сильное магнитное поле и карта газовых облаков, которых необходимо избегать, помогут нам в этом. А если при этом ещё овладеть технологией криозаморозки, нам даже не нужно будет брать с собой ресурсы, кроме семян для посадки и яйцеклеток для выращивания.


Межзвёздный прямоточный двигатель Бассарда

А что, если мы захотим расширить возможности человечества: нечто вроде того, что показывают в «Звёздном пути»?


Бомовские траектории для электрона, прошедшего через две щели

3) Умозрительные технологии.

Можем ли мы построить транспортер? Возможен ли двигатель деформации пространства? Что насчёт подпространственных коммуникаций? Пока всё это технологии мечты, основанные на современной теоретической физике, но возможность их существования в нашей Вселенной ещё не определена.

В теории транспортер может использовать квантовую запутанность для переноса любой квантовой системы из одной точки в другую, если только у волновой функции системы существует ненулевая вероятность находиться в другом месте. Но пока неизвестно, может ли обладать таким свойством макроскопическая система.

Двигатель деформации пространства и мгновенная связь основываются на искривлении пространства-времени и возможности отправить через это пространство сигнал или материю без искажений и уничтожения. В принципе, для общей теории относительности можно найти решение, при котором это происходит. Однако, неясно, можно ли достичь этого в нашей Вселенной, чтобы:

Вам не потребовалась энергия, сравнимая с той, что хранится во всём Солнце;
Приливные силы не уничтожили бы материю, которую вы пытаетесь отправить через искривлённое пространство;
Не уничтожить материю, создавая искривлённое пространство и выпрямляя его;
Вообще было возможно соединить две очень удалённые точки пространства.


Математический график шварцшильдовской чёрной дыры

Сейчас, как бы неприятно это ни звучало, нам лучше всего сосредоточиться на осуществлении одностороннего путешествия. Лучше уж лететь куда-нибудь, чем просто сидеть и ждать, пока появится новая технология, если она вообще допустима в нашей Вселенной. Но не закрывайтесь от новых идей – ведь то, что сегодня кажется маловероятным, может привести к исполнению нашей межзвёздной мечты. Требуйте физической точности и скептически относитесь к экстраординарным заявлениям, но не закрывайтесь и от возможностей. Наше величайшее путешествие во Вселенную обязательно произойдёт.



Включайся в дискуссию
Читайте также
Храм венеры и ромы в риме Храм венеры в риме
ИТ-рынок в Канаде: развитие северной «Кремниевой долины Кризис в Канаде
Самый большой флаг в мире