Подпишись и читай
самые интересные
статьи первым!

Модель самолета на солнечных батареях. Электрический самолёт Sunseeker Duo совершил первые полёты Самолет на солнечных панелях

May 12th, 2013

Лето 2010 года навсегда войдет в историю авиации. Впервые пилотируемый самолет на солнечных батареях совершил беспосадочный полет длительностью более суток. Уникальный прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIA — детище швейцарской компании Solar Impulse и ее бессменного президента Бертрана Пикара.

В своем послании, размещенном на сайте компании после успешных испытаний летательного аппарата , Пикар отмечал: «До этого дня мы не могли по-настоящему рассчитывать на чье-либо доверие. Теперь же мы действительно можем показать всему политическому и экономическому миру, что эта технология работает».

Ранним утром 7 июля благодаря энергии, вырабатываемой 12 тысячами солнечных элементов , установленных па крыле длиной более 64 метров (вполне сравнимо с габаритами лайнера Airbus А340), необычного вида одноместный самолет весом в полторы тонны поднялся с аэродрома в Пайерне (Швейцария). За штурвалом сидел один из основателей , 57-летний швейцарский пилот и бизнесмен Андре Боршберг.

«Это был самый удивительный полет в моей жизни, — заметил он после приземления. — Я просто сидел и смотрел, как уровень заряда батареи поднимается с каждым часом, и гадал, хватит ли емкости на всю ночь. А в результате пролетал 26 часов без единой капли топлива и какого-либо загрязнения окружающей среды!»

Не первый самолет на солнечной энергии , построенный человеком, но первый, преодолевший границу между днем и ночью с пилотом на борту.

Модели СОЛНЕЧНЫХ САМОЛЕТОВ начали появляться в 1970-х годах с выходом на рынок первых доступных по цене фотоэлектрических элементов, а в 80-е начались и пилотируемые полеты. Американская команда под руководством Пола Маккриди создала самолет Solar Challenger мощностью 2,5 кВт, который совершал впечатляющие многочасовые полеты. В 1981 году ему удалось преодолеть Ла-Манш. А в Европе Гюнтер Рохельт из Германии поднялся в небо на собственной модели Solair 1, оснащенной двумя с половиной тысячами ячеек общей мощностью около 2,2 кВт.

В 1990 году американец Эрик Реймонд пересек Соединенные Штаты на своем Sunseeker. Впрочем, на путешествие с двадцатью остановками ушло более двух месяцев (121 час полета), а самый длинный отрезок насчитывал около 400 километров. Весила модельлетательного аппарата всего 89 килограммов и была оснащена кремниевыми солнечными панелями .

В середине 90-х сразу несколько подобных самолетов приняли участие в конкурсе «Berblinger»: перед ними стояла задача выйти на высоту в 450 метров и продержаться на энергии солнца порядка 500 Вт на квадратный метр крыла. Приз в 1996 году получила модель профессора Войта-Ницшманна из университета Штутгарта, чей Icare II имел 25-метровое энергетическое крыло площадью 26 кв. метров.

В 2001 году «солнечный» беспилотник компании AeroVironment под названием Helios, разработанный специально для НАСА и имевший размах крыла более 70 метров, сумел подняться на высоту более 30 километров. Двумя годами позже он попал в зону турбулентности и пропал где-то в Тихом океане.

В 2005 году небольшой беспилотник с размахом крыла около 5 метров Алана Коккони и его компании AC Propulsion впервые успешно осуществил полет длительностью более 48 часов. За счет энергии, накопленной в дневное время, летательный аппарат был способен и на ночной полет. Наконец, в 2007-2008 годах англо-американская компания QuinetiQ осуществила успешные полеты своего летательного аппарата Zephyr продолжительностью 54 и 83 часа. Машина весила около 27 кг, размах крыла составлял 12 м, а высота полета превышала 18 км.

Проект самолета на солнечных батареях Solar Impulse вряд ли сумел бы выбраться из пеленок чертежей и набросков, если бы не энергия неутомимого Бертрана Пикара — врача, путешественника, бизнесмена и авиатора-рекордсмена. Впрочем, похоже, помогли и гены.

Дед инноватора Огюст Пикар — знаменитый физик, друг Эйнштейна и Марии Кюри, один из пионеров авиации и подводного дела, изобретатель первого глубоководного аппарата и стратостата. Преодолев на воздушном шаре 15-километровую высоту в начале 30-х, он стал первым человеком в мире, собственными глазами увидевшим кривизну поверхности земного шара.

Затем Огюста потянуло вниз, и изобретатель построил глубоководный аппарат, который назвал батискафом. После нескольких совместных погружений его сын Жак Пикар настолько увлекся исследованием тайн Мирового океана, что стал одним из первопроходцев, побывавших на дне Марианской впадины (глубина 11 км.). Затем, взяв за основу работы отца, Жак построил первую в мире субмарину для туристов, а также мезоскаф для исследования Гольфстрима.

Благодаря отцу Бертран Пикар, родившийся в 1958 году, еще в детстве получил уникальную возможность лично познакомиться с выдающимися людьми, во многом определившими его будущее: знаменитым швейцарским пилотом-спасателем Германом Гейгером, с которым он совершил первый перелет через Альпы, дайвером-рекордсменом Жаком Майолем, учившим его погружению во Флориде, одним из столпов мировой космонавтики Вернером фон Брауном, познакомившим его с астронавтами и сотрудниками NASA.

В 16-летнем возрасте, возвратившись из Флориды после очередного практического курса глубоководных погружений, Бертран совершил свое первое воздушное путешествие, открыв для себя дельтаплан. Стоит ли удивляться, что именно он вскоре стал одним из пионеров этого вида спорта в Европе. Спустя годы Пикар не только стал основателем Швейцарской федерации дельтапланеризма и профессиональным инструктором, но и испробовал все, что только возможно: воздушную акробатику, запуск с воздушного шара, парашютный спорт. Несколько раз Пикар становился чемпионом Европы в этом виде спорта, наконец, он был первым, кто перелетел швейцарско-итальянские Альпы на мотодельтаплане.

Незаметно «воздушное» хобби стало для него еще и профессиональной лабораторией. Заинтересовавшись поведением людей в экстремальных ситуациях, Пикар поступил на отделение психиатрии и через несколько лет получил докторскую степень медицинского факультета университета Лозанны в области психотерапии, после чего открыл собственную практику. Предметом особого интереса для Бертрана стали техники медицинского гипноза: недостающие знания он получал как в университетах Европы и США, гак и у последователей даосизма в Юго-Восточной Азии.

Именно этот интерес снова вернул Пикара в небо. В 1992 году компания Chrysler устроила первую в истории трансатлантическую гонку на воздушных шарах, получившую название Chrysler Challenge. Бельгийский авиатор Вим Верштратен пригласил Пикара в качестве второго пилота — он был уверен, что наличие па борту психотерапевта, владеющего практикой гипноза, может оказаться неплохим преимуществом перед остальными командами. Так и получилось. Экипаж Верштратена и Пикара легко выдержал марафон и выиграл историческую гонку, приземлившись в Испании посте пятидневного перелета длиной в пять тысяч километров.

Для Пикара полет стал не просто откровением, а еще и новым способом взаимодействия с природой. После 18 лет полетов на дельтаплане у него появилась новая мечта — облететь весь мир без мотора и руля, положившись на волю ветра.

И мечта сбылась. Пусть и не с первой попытки. Спонсорами выступили швейцарский производитель часов Breitling и Международный олимпийский комитет. 12 января 1997 года, после трех лет подготовки, воздушный шар под названием Breitling Orbiter взлетел с аэродрома в Швейцарии, но из-за технических неполадок уже через шесть часов приземлился. Breitling Orbiter 2 отправился в полет в феврале 1998 года, но снова не добрался до точки назначения. На этот раз остановка произошла в Бирме, после того как китайские власти отказали Пикару в предоставлении воздушного коридора. Этот полет стал самым длительным путешествием на воздушном шаре в истории (более девяти дней), но цель все еще не была достигнута.

Наконец, третий шар покинул Швейцарию в марте 1999 года и приземлился в Египте после непрерывного полета длительностью почти в 20 суток и протяженностью более 45 тысяч километров. Своим беспрецедентным путешествием Пикар побил семь мировых рекордов, заработал несколько почетных научных званий и вошел в энциклопедии наряду со знаменитыми отцом и дедом.

Breitling Orbiter 3 разместился в Смитсоновском музее воздухоплавания и космонавтики в США, а Бертран Пикар написал несколько книг и стал желанным гостем на многочисленных лекциях и семинарах.

В 2003 году неутомимый Пикар объявил о новом, еще более амбициозном начинании, взявшись за создание пилотируемогосамолета на солнечных батареях , способного облететь весь земной шар. Так появился проект Solar Impulse .

Партнером Пикара и незаменимым СЕО компании стал швейцарский пилот и бизнесмен Андре Боршберг. Он родился в Цюрихе, закончил инженерный факультет Федерального политехнического института в Лозанне (EPFL), получил в легендарном Массачусетском технологическом институте степень в области менеджмента, и с тех пор накопил огромный опыт в качестве основателя и управляющего самых разных бизнес-проектов. Кроме того, с ранних лет Андре увлекался авиацией — учился в школе ВВС Швейцарии и получил не один десяток лицензий, дающих право профессионального управления самолетами и вертолетами всех мыслимых категорий.

Пять лет Боршберг проработал в одной из крупнейших консалтинговых компаний мира McKinsey, после чего основал собственный венчурный фонд, вывел в свет две компании в области высоких технологий и создал благотворительный фонд.

В 2003 году в Лозанне Пикар и Боршберг провели предварительные исследования, подтвердившие принципиальную инженерную возможность реализовать концепцию Пикара. Расчеты подтверждали, что создать летательный аппарат на солнечных батареях теоретически возможно. В ноябре 2003 года проект был официально запущен, и начались разработки прототипа.

Начиная с 2005 гола в Королевском институте метеорологии в Брюсселе моделировались пробные виртуальные полеты модели самолета в реальных условиях аэропортов Женевы и Цюриха. Главной задачей был расчет оптимального маршрута, ведь долго находиться под облаками, закрывающими солнце, СОЛНЕЧНЫЙ САМОЛЕТ не мог. И наконец, в 2007 году началось изготовление самолета.


В 2009 году первенец HB-SIA был готов к испытательным полетам. В процессе создания конструкции перед инженерами стояли две основных задачи. Нужно было минимизировать вес летательного аппарата , одновременно добиваясь максимальной энерговооруженности и эффективности. Первая цель была достигнута за счет использования углеродного волокна, специально разработанной «начинки» и путем избавления от всего лишнего. К примеру, кабина пилота не имела системы обогрева, так что Боршбергу пришлось использовать специальный термокостюм.

Главным, по попятным причинам, стал вопрос получения, накопления и оптимального расходования солнечной энергии. В типичный полдень каждый квадратный метр земной поверхности получает около тысячи ватт или 1,3 «лошадиных силы тепла». 200 квадратных метров фотоэлементов с 12-и % КПД вырабатывают около 6 киловатт энергии. Много ли это? Скажем так, примерно столько же было в распоряжении легендарных братьев Райт в 1903 году.

Па поверхности крыла СОЛНЕЧНОГО САМОЛЕТА было смонтировано более 12 тысяч ячеек. Их эффективность могла бы быть и выше — на уровне тех панелей, что устанавливаются па МКС. Но более эффективные ячейки обладают и большим весом. В невесомости это не играет роли (скорее уж — при подъеме энергетических ферм на орбиту при помощи космических «грузовиков»). Однако СОЛНЕЧНЫЙ САМОЛЕТ Пикара должен был продолжать полет ночью, используя накопленную в аккумуляторах энергию. И вот тут каждый липший килограмм играл критически важную роль. Именно фотоэлементы оказались самым тяжелым компонентом машины (100 килограммов, или около четверти веса летательного аппарата), так что оптимизация этого соотношения стала самой сложной задачей для команды инженеров.

Наконец, на СОЛНЕЧНЫЙ САМОЛЕТ установили уникальную бортовую компьютерную систему, оценивающую все параметры полета и предоставляющую необходимую информацию пилоту, а также наземной команде. В общей сложности инженеры Solar Impulse в процессе реализации проекта создали около 60 новых технологических решений в области материалов и солнечной энергетики.

В 2010 году начались первые и весьма успешные тестовые полеты, а уже в июле Андре Боршберг совершил свой исторический круглосуточный полет.

«К утру в батареях оставалось еще около 10 процентов заряда, — рассказывал воодушевленный Боршберг. — Это прекрасный и совершенно неожиданный для нас результат. Наш самолет размером с авиалайнер и весит как автомобиль, но потребляет энергии не больше, чем мопед. Это начало новой эры, причем не только в авиационной индустрии. Мы показали потенциал возобновляемой энергии: если уж мы можем на ней летать, то способны и на многие другие вещи. С помощью новых технологий мы можем позволить себе сохранить привычный уровень жизни, но потреблять гораздо меньше энергии. Ведь пока что мы слишком зависимы от двигателей внутреннего сгорания и цен на ресурсы!»

HB-SIA - технические данные прототипа

  • Высота полета — 8 500 м
  • Наибольшая масса — 1 600 кг
  • Крейсерская скорость — 70 км/ч
  • Минимальная скорость — 35 км/ч
  • Размах крыла — 63,4 м
  • Площадь крыла — 200 кв.м
  • Длина — 21,85 м
  • Высота — 6,4 м
  • Мощность силовой установки — 4×7,35 кВт
  • Диаметр винтов силовой установки — 3,5 м
  • Масса аккумуляторов — 400 кг
  • КПД солнечных батарей (11 628 монокристаллов) - 22,5%

Имеет ли солнечная авиация будущее? Разумеется, обещает Боршберг. В 1903 году братья Райт были уверены, что пересечь Атлантику на самолете невозможно. А спустя 25 лет Чарльз Линдберг сумел долететь из Нью-Йорка в Париж. Еще столько же лет потребовалось на создание первого 100-местного авиалайнера. Команда Пикара и Боршберга находится только в начале пути, максимальная скорость рабочего прототипа — не более 70 километров в час. Но первый шаг уже сделан.

Впрочем, в Solar Impulse уже знают, что будет дальше. В 2012-2013 годах прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIB с обновленным оборудованием и постоянным давлением в кабине пилота должен совершить первое кругосветное путешествие на «солнечном крыле». Размах несущей поверхности составит около 80 метров — больше, чем у любого современного авиалайнера. Ожидается, что полет пройдет на высоте 12 километров. Правда, он не будет непрерывным. Для смены экипажа из двух пилотов потребуется пять посадок. Ведь полет при все еще невысокой линейной скорости займет более трех-четырех суток.

Как бы то ни было, проект Пикара вселяет оптимизм. Возможно, через пару десятилетий авиакомпании, наконец, перестанут повторять сакраментальную мантру о том, что скоро «нефть кончится». Кончится? Ну, и отлично. Будем летать не на керосине, а на солнечной энергии!

А я вам еще напомню про , а так же узнайте из каких кубиков складывалась Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Источник: https://www.kp.ru/daily/26676/3699473/

Аппаратами на солнечных батареях сегодня никого не удивишь. Тем не менее первый тестовый полет стратосферного самолета SolarStratos на солнечной энергии, который состоялся 5 мая, можно назвать знаменательным событием.

Вы спросите, чем этот швейцарский SolarStratos отличается от своего собрата солнечного планера , известного тем, что он за год обогнул земной шар, сделав 16 посадок? Или от аппарата на солнечной тяге Федора Конюхова , который намерен облететь на нем Землю без посадки за 120 часов?

Отличие в том, что SolarStratos рассчитан на бОльшую высоту. Если Федор Конюхов планирует забраться на 16 километров вверх, то стратосферный самолет швейцарцев предназначен для полетов на высоте 25 километров и выше. Невесомости там еще нет, однако специалисты называют эти слои стратосферы уже ближним космосом. Освоение этой области считается очень перспективным направлением. Дело в том, что здесь можно запускать атмосферные спутники связи, которые в несколько раз дешевле космических. Или спутники наблюдения, они не только будут экономить деньги, но и давать более точную информацию. Ведь с высоты в 20-30 километров можно точнее определить, например, границы лесного пожара, чем с околоземной орбиты (свыше 160 км).

Кстати, не так давно Россия приступила к тестированию атмосферного спутника на солнечных батареях «Сова». Но это небольшой беспилотник весом 12 килограмм и размахом крыла 9 метров.

А SolarStratos — это первый в мире полноценный двухместный стратосферный самолет. Он весит 450 килограммов, длина фюзеляжа 8,5 метров, размах крыльев равен 25 метрам. Причем 22 квадратных метра поверхности занимают солнечные панели.

Весной Федеральное управление гражданской авиации Швейцарии выдало руководителю проекта SolarStratos Рафаэлю Домьяну разрешение на проведение летных испытаний. И в начале мая чудо-самолет совершил первый полет. Летчик-испытатель Дамиан Хишье за время короткого 7-минутного полета поднял аппарат на скромную высоту — 300 метров. Подниматься в стратосферу самолет начнет, когда конструкторы убедятся, что аппарат работает идеально.

Проблема в том, что летчик не имеет права на ошибку: чтобы максимально облегчить самолет, инженеры не стали оборудовать кабину системами поддержания нормального давления и температуры. Чтобы выжить при температуре минус 56 градусов и атмосферном давлении в десятки и сотни раз ниже, чем на поверхности Земли, оба летчика надевают скафандры. Что интересно: швейцарцы среди разных вариантов выбрали российский скафандр «Сокол», он не предназначен для выходов в космос, но позволяет выдерживать условия межзвездного пространства. Единственный минус — это невозможность использования парашюта в случае нештатной ситуации. Поэтому к безопасности стратосферного самолета предъявляются повышенные требования.

Мы очень довольны, что можем продемонстрировать работающую технологию, которая позволяет достичь большего, чем аппараты на ископаемых видах топлива, — заявил Рафаэль Домьян. — Электрические и солнечные автомобили вытеснят двигатели внутреннего сгорания с рынка в XXI веке. А наши самолеты могут летать на высоте 25000 метров и это открывает двери для возможностей коммерческой электрической и солнечной авиации в пределах ближнего космоса.

Домьян рассчитывает, что полеты в стратосферу можно будет продавать туристам.

ТТХ SolarStratos

  • Длина – 8,5 метра
  • Размах крыльев – 24,9 метра
  • Вес – 450 килограммов
  • Запас автономности – более 24 часов
  • Привод – 4-лопастной пропеллер, диаметр – 2,2 метра
  • Мотор – электрический мощностью 32кВт,
  • КПД мотора – 90%
  • Количество пилотов – 2
  • Питание – солнечная энергия
  • Площадь солнечной батареи – 22 квадратных метра

С легкой руки журналистов летательные аппараты на солнечной энергии, способные находиться в воздухе неограниченное время, стали называть атмосферными спутниками, хотя это понятие вмещает в себя гораздо больше объектов, например аэростаты. Наиболее распиаренным проектом в этой области стал Solara 50 американской компании Titan Aerospace, картинки которого заполонили интернет и страницы журналов. Но реальных полетов так никто и не дождался. Концепция провалилась из-за того, что большой самолет нельзя сделать таким же, как маленький. Ролик получился очень красивым, но такой самолет, увы, не смог полететь.

Ночь продержались

С некоторой натяжкой «отцом» атмосферных спутников можно назвать беспилотный аппарат на солнечных батареях NASA Helios, который 3 августа 2001 года достиг высоты 29 524 м, что остается действующим на текущий момент мировым рекордом высоты устойчивого горизонтального полета для крылатых летательных аппаратов без реактивных двигателей, и провел на высоте более 29 км более 40 минут. Однако продержаться хотя бы сутки в воздухе ему не удалось, и в 2003 году в ходе испытательного полета на максимальную длительность нахождения в воздухе на высоте 850 м Helios попал в зону сильной турбулентности, разрушился и упал в Тихий океан.

Гораздо бóльших успехов добился разработанный британской компанией QinetiQ сверхлегкий беспилотник Zephyr, поставивший в 2007 году неофициальный мировой рекорд длительности полета для БПЛА — 54 часа. В 2008 году 30-килограммовый Zephyr-6 провел в воздухе 82,5 часа, а в 2010 году уже 30-килограммовый Zephyr-7 продержался над аризонской пустыней две недели, причем максимальная высота полета составляла 18 км. После этого компанию QinetiQ приобрела Airbus Defence and Space, и проект стал полностью военным и секретным. Новый Zephyr-8 в 2015 году продержался в воздухе те же две недели, но уже с полезной нагрузкой в 5 кг. И в этом году сообщается о начале испытаний Zephyr S с 22,5-метровым размахом крыльев. Проект Zephyr получил доступ к самым последним технологиям. Например, он использует литий-серные аккумуляторы Li-S, которые имеют удельную емкость в два раза выше, чем те, которые доступны на рынке.

В этом году в игру вступил могущественный Facebook, который ранее приобрел британскую компанию Ascenta, разработавшую гигантский высотный дрон Aquila. В июне 2016 года Aquila совершил первый, пока 90-минутный полет. О российских разработках в области атмосферных спутников долгое время не было слышно ничего до августа 2016 года.


Главный конструктор, летать и конструировать авиационную технику начал с 14 лет. Основные алгоритмы системы управления, вопросы устойчивости и управляемости.

2 августа 2016 года появилась новость, что в России удачно испытан беспилотный аппарат, который продержался в воздухе более 50 часов на высотах до 9 км. Заместитель генерального директора Фонда перспективных исследований Игорь Денисов объявил, что был совершен экспериментальный полет масштабной модели в рамках проекта «Сова», реализуемого Фондом перспективных исследований и компанией «Тайбер». И через неделю мы сидели в московском офисе «Тайбера» и расспрашивали руководителя проекта Юрия Тыцыка и главного конструктора Вячеслава Шпилевского о технических подробностях.


Новый подход

Мысль о самолете с гибким крылом пришла Юрию в голову два года назад. Он поделился идеей со своими друзьями по планерному спорту: почти вся команда разработчиков «Совы» — выходцы из планерных клубов, и это видно по проекту. Друзья его поддержали, и, не откладывая в долгий ящик, Юрий и Вячеслав из пенопласта смастерили первую модель с размахом крыльев под два метра. Сохранились трогательные кадры первых пусков, которые проходили во дворе дома. Модель полетела, да еще как! Так сформировался костяк команды — Юрий стал руководителем проекта, Вячеслав Шпилевский — главным конструктором, а Алексей Стратилатов взялся за интеграцию своей системы управления в новую схему летательного аппарата, электронную начинку и автопилоты. За прошедшие пару лет ребята сделали около двадцати прототипов. Год назад проект поддержал Фонд перспективных исследований, и в сентябре в воздух должен подняться полноразмерный аппарат с размахом крыльев в 28,5 м.


Связанные одной нитью

Как ведут себя в небе атмосферные спутники, которые должны находиться в воздухе месяцами? Днем они заряжают через солнечные панели свои аккумуляторные батареи и набирают максимально возможную высоту, накапливая потенциальную энергию. После захода солнца они должны как можно медленнее терять высоту, экономно расходуя электроэнергию, — летающих энергозаправщиков еще не придумали. Поэтому аппараты должны иметь аэродинамику на уровне самых лучших планеров, а еще лучше — превосходить их. Один из главных приемов увеличения аэродинамического качества (сколько метров может пролететь летательный аппарат при снижении на один метр) — удлинение крыла (отношение размаха крыла к средней ширине). Только у трех в мире рекордных планеров это значение превышает 50 единиц, и это практически предел. При классической компоновке сломаться крылу не дает лонжерон — мощный силовой элемент, располагающийся по всей длине крыла и воспринимающий изгибающий момент. Чем длиннее крыло, тем тяжелее лонжерон, и даже современные углепластики не спасают ситуацию. А от скручивания крыло спасает мощная обшивка. В любом учебнике по проектированию самолетов четко написано, что при увеличении линейных размеров самолета его масса растет в кубе, из-за чего масштабирование красивых ажурных моделей-прототипов на реальные размеры часто приводит к катастрофам. Именно поэтому мы не увидели полноразмерного спроектированного по классической схеме Solara.

Идея Юрия Тыцыка была необычной — сделать гибкое крыло без классических лонжеронов и работающей на кручение обшивки. Кто-нибудь слышал, чтобы у альбатроса в полете от нагрузок сломались крылья? А ведь эти птицы летают в штормовой ветер. Обычные самолеты избегают этого, не говоря уж об экспериментальных или рекордных аппаратах. Природа явно подсказывает применение «гибких решений». Также у птиц нет элеронов — для поворота они закручивают все крыло.


«Вот мы на фотографии втроем держим самолет, — Юрий открывает файл на компьютере. — Если два человека по краям отпустят, он сломается. Аппарат гибкий и непрочный. Мы его даже несколько раз ломали при переноске. Но в полете такого не происходит». Вячеслав Шпилевский пытается объяснить мне идею доступными образами: «Наш аппарат подобен косяку птиц, кончики крыльев которых связаны, чтобы им проще было держать дистанцию». По сути «Сова» — это три самолета, летящих в очень-очень плотном строю. Более плотном, чем летают легендарные «Стрижи». И если они сломают строй, самолет развалится. Полет данной схемы аппарата стал возможен благодаря электронике, на базе автопилота, созданного Алексеем, и уникальных алгоритмов, написанных Вячеславом.

У «Совы» нет и элеронов — классических аэродинамических органов управления на задней кромке крыла, регулирующих угол крена самолета. Креном управляют горизонтальные стабилизаторы на хвостовой части фюзеляжей боковых корпусов. За курс и тангаж отвечает оперение центрального корпуса. На «Сове» два электромотора. «Чем больше моторов, тем больше винтов, а чем их больше, тем меньше их диаметр и они легче. — У Юрия на все есть простые и логичные ответы. — К тому же моторы компенсируют вес хвостовых балок со стабилизаторами».


Планерные гены

Напоминая о планерных корнях создателей, спрашиваю, использует ли аппарат восходящие потоки. Набирает ли в них высоту в автоматическом режиме? «Сейчас у нас реализован алгоритм центрирования восходящего потока. Если аппарат натыкается на зону восходящих потоков, то закладывает вираж, смещаясь в область, где скороподъемность выше, — Юрий руками наглядно показывает маневр планера, — и в автоматическом режиме отрабатывает поток до самой кромки облаков. Восходящие потоки работают до высоты нижней кромки кучевой облачности — около 2000 м. Если поток пропадает, он продолжает лететь дальше по программе. Пока еще он не умеет самостоятельно искать восходящие потоки, да и никто сейчас не умеет. Но это скорее наш интерес как планеристов, ведь бóльшую часть времени «Сова» проводит выше облаков, где термические восходящие потоки почти отсутствуют. Мы использовали термики еще и для того, чтобы проверить живучесть аппарата в неспокойной атмосфере, — в них ощутимо трясет».

За все время полета заряд аккумуляторных батарей «Совы» не опускался ниже 30%, и я задаю вопрос, который собирался задать в самом начале беседы: если был такой запас по энергии, почему не установили новый рекорд? «Такой задачи у нас просто не было, — улыбается Юрий Тыцык. — А для того чтобы выяснить способность энергетической системы работать автономно, достаточно двух циклов зарядки-разрядки».


Топливные расходы – это одна из самых главных составляющих себестоимости полета на самолетах . Но благодаря таким разработкам как Sunseeker Duo , в будущем, возможно, от них вообще удастся избавиться, и воздушные средства передвижения все без исключения станут электрическими .




Сразу несколько команд разработчиков по всему миру работают над созданием новых электрических самолетов, которые будут быстрее, экономнее и выносливее, чем предыдущие модели. Среди самых известных из них можно называть Бертрана Пикара и Андре Борщберга, разработавших , и Эрика Пеймонда, представившего недавно на выставке AERO Global Show for General Aviation свое новое детище – Sunseeker Duo.

Sunseeker Duo – это первый в мире электрический самолет, который может нести на себе не одного человека, а сразу двух. Создан он на основе серийного немецкого планера Stemme S-10, дополненного электродвигателем, аккумулятором и солнечными панелями на крыльях.



Размах последних составляет 23 метра, и вся эта поверхность покрыта солнечными панелями, которые могут вырабатывать электричество прямо во время полета. На одном только полном заряде аккумуляторов Sunseeker Duo может летать лишь 25 минут, но при отличной погоде и отсутствии облачности это время вырастет до нескольких часов – пока солнце будет светить на его крылья, самолет будет летать. При этом данный летательный аппарат все также может функционировать в режиме планера, так что все эти параметры автоматически увеличиваются в несколько раз, ведь двигатель в таком варианте полета нужен лишь для набора высоты.



Интересен тот факт, что создание электрического самолета Sunseeker Duo смогло осуществиться благодаря сайту Kickstarter, на котором Эрик Пеймонд собрал сумму, необходимую для осуществления своего проекта.

Создатель Sunseeker Duo называет свое детище самым быстрым в мире электрическим самолетом, правда, нигде не указывает, с какой максимальной скоростью тот может лететь.

Реальные самолеты, которые питаются от солнечных батарей, уже существуют. Можно ли сделать своими руками такой же, или хотя бы приближенный к реальности, аналог, то есть модель самолета на солнечных батареях, которая была бы полностью автономной и не нуждалась в подзарядке от сети или в смене батарей. То есть, чтобы это был маленький “летающий” .

В этом направлении продвинулся мастер, создавший движущуюся модель самолета на солнечных батареях, которая, к сожалению, способна летать лишь условно, будучи подвешенной на нитке Но и это решение представляет некоторый интерес для конструкторов игрушечных летательных аппаратов.

Этот самолетик автор сделал для своего сына, решив снабдить свое самодельное летательное устройство солнечными панелями и маленьким моторчиком. В качестве генератора электроэнергии был использован маломощный дачный светильник, точнее, его начинка. На самолетик были поставлены две такие панельки. Движок также был внутри этого светильника, который имитировал порхание крыльями бабочки. Работал этот светильник только днем, для долгого заряда, учитывая большую нагрузку в виде двигателя, он не был пригоден.

В модели самолета моторчик от светильника использован для вращения винта. Благодаря тому, что были поставлены две солнечные панели, даже свет настольной 40-ваттной лампы позволяет вращаться пропеллеру, довольно габаритному для таких размеров самолета. Как показано на видео, мотор успешно приводит в действие этот винт, если держать его недалеко от лампочки. При приближении к ней, винт приходит в движение и, соответственно, при удалении, останавливается.

Леска, к которой привязан самолетик, не дает ему свалиться, реально летать этот “летательный” аппарат не сможет. Для игровых и декоративных целей такая связка вполне хороша. В отличие от статичных моделей такое устройство имеет динамику, вызывает интерес, имеет некоторую энергетическую ауру. Особенно приятно, то, что самолет двигается совершенно автономно, нет необходимости хоть как-то его подзаправлять. Естественно, работать он будет только в дневное время. Особенно активно летает он на балконе, где много солнца. Наверное, для растений, которые растут на балконе в горшках, вентиляция, которую создает этот самолет, полезна.

Самолет на солнечных панелях

Лето 2010 года навсегда войдет в историю авиации. Впервые пилотируемый самолет на солнечных батареях совершил беспосадочный полет длительностью более суток. Уникальный прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIA - детище швейцарской компании Solar Impulse и ее бессменного президента Бертрана Пикара.

В своем послании, размещенном на сайте компании после успешных испытаний летательного аппарата , Пикар отмечал: «До этого дня мы не могли по-настоящему рассчитывать на чье-либо доверие. Теперь же мы действительно можем показать всему политическому и экономическому миру, что эта технология работает».

Ранним утром 7 июля благодаря энергии, вырабатываемой 12 тысячами солнечных элементов , установленных па крыле длиной более 64 метров (вполне сравнимо с габаритами лайнера Airbus А340), необычного вида одноместный самолет весом в полторы тонны поднялся с аэродрома в Пайерне (Швейцария). За штурвалом сидел один из основателей Solar Impulse , 57-летний швейцарский пилот и бизнесмен Андре Боршберг.

«Это был самый удивительный полет в моей жизни, - заметил он после приземления. - Я просто сидел и смотрел, как уровень заряда батареи поднимается с каждым часом, и гадал, хватит ли емкости на всю ночь. А в результате пролетал 26 часов без единой капли топлива и какого-либо загрязнения окружающей среды!»

Solar Impulse – не первый самолет на солнечной энергии , построенный человеком, но первый, преодолевший границу между днем и ночью с пилотом на борту.

Модели СОЛНЕЧНЫХ САМОЛЕТОВ начали появляться в 1970-х годах с выходом на рынок первых доступных по цене фотоэлектрических элементов, а в 80-е начались и пилотируемые полеты. Американская команда под руководством Пола Маккриди создала самолет Solar Challenger мощностью 2,5 кВт, который совершал впечатляющие многочасовые полеты. В 1981 году ему удалось преодолеть Ла-Манш. А в Европе Гюнтер Рохельт из Германии поднялся в небо на собственной модели Solair 1, оснащенной двумя с половиной тысячами ячеек общей мощностью около 2,2 кВт.

В 1990 году американец Эрик Реймонд пересек Соединенные Штаты на своем Sunseeker. Впрочем, на путешествие с двадцатью остановками ушло более двух месяцев (121 час полета), а самый длинный отрезок насчитывал около 400 километров. Весила модельлетательного аппарата всего 89 килограммов и была оснащена кремниевыми солнечными панелями .

В середине 90-х сразу несколько подобных самолетов приняли участие в конкурсе «Berblinger»: перед ними стояла задача выйти на высоту в 450 метров и продержаться на энергии солнца порядка 500 Вт на квадратный метр крыла. Приз в 1996 году получила модель профессора Войта-Ницшманна из университета Штутгарта, чей Icare II имел 25-метровое энергетическое крыло площадью 26 кв. метров.

В 2001 году «солнечный» беспилотник компании AeroVironment под названием Helios, разработанный специально для НАСА и имевший размах крыла более 70 метров, сумел подняться на высоту более 30 километров. Двумя годами позже он попал в зону турбулентности и пропал где-то в Тихом океане.

В 2005 году небольшой беспилотник с размахом крыла около 5 метров Алана Коккони и его компании AC Propulsion впервые успешно осуществил полет длительностью более 48 часов. За счет энергии, накопленной в дневное время, летательный аппарат был способен и на ночной полет. Наконец, в 2007-2008 годах англо-американская компания QuinetiQ осуществила успешные полеты своего летательного аппарата Zephyr продолжительностью 54 и 83 часа. Машина весила около 27 кг, размах крыла составлял 12 м, а высота полета превышала 18 км.

Проект самолета на солнечных батареях Solar Impulse вряд ли сумел бы выбраться из пеленок чертежей и набросков, если бы не энергия неутомимого Бертрана Пикара - врача, путешественника, бизнесмена и авиатора-рекордсмена. Впрочем, похоже, помогли и гены.

Дед инноватора Огюст Пикар - знаменитый физик, друг Эйнштейна и Марии Кюри, один из пионеров авиации и подводного дела, изобретатель первого глубоководного аппарата и стратостата. Преодолев на воздушном шаре 15-километровую высоту в начале 30-х, он стал первым человеком в мире, собственными глазами увидевшим кривизну поверхности земного шара.

Затем Огюста потянуло вниз, и изобретатель построил глубоководный аппарат, который назвал батискафом. После нескольких совместных погружений его сын Жак Пикар настолько увлекся исследованием тайн Мирового океана, что стал одним из первопроходцев, побывавших на дне Марианской впадины (глубина 11 км.). Затем, взяв за основу работы отца, Жак построил первую в мире субмарину для туристов, а также мезоскаф для исследования Гольфстрима.

Благодаря отцу Бертран Пикар, родившийся в 1958 году, еще в детстве получил уникальную возможность лично познакомиться с выдающимися людьми, во многом определившими его будущее: знаменитым швейцарским пилотом-спасателем Германом Гейгером, с которым он совершил первый перелет через Альпы, дайвером-рекордсменом Жаком Майолем, учившим его погружению во Флориде, одним из столпов мировой космонавтики Вернером фон Брауном, познакомившим его с астронавтами и сотрудниками NASA.

В 16-летнем возрасте, возвратившись из Флориды после очередного практического курса глубоководных погружений, Бертран совершил свое первое воздушное путешествие, открыв для себя дельтаплан. Стоит ли удивляться, что именно он вскоре стал одним из пионеров этого вида спорта в Европе. Спустя годы Пикар не только стал основателем Швейцарской федерации дельтапланеризма и профессиональным инструктором, но и испробовал все, что только возможно: воздушную акробатику, запуск с воздушного шара, парашютный спорт. Несколько раз Пикар становился чемпионом Европы в этом виде спорта, наконец, он был первым, кто перелетел швейцарско-итальянские Альпы на мотодельтаплане.

Незаметно «воздушное» хобби стало для него еще и профессиональной лабораторией. Заинтересовавшись поведением людей в экстремальных ситуациях, Пикар поступил на отделение психиатрии и через несколько лет получил докторскую степень медицинского факультета университета Лозанны в области психотерапии, после чего открыл собственную практику. Предметом особого интереса для Бертрана стали техники медицинского гипноза: недостающие знания он получал как в университетах Европы и США, гак и у последователей даосизма в Юго-Восточной Азии.

Именно этот интерес снова вернул Пикара в небо. В 1992 году компания Chrysler устроила первую в истории трансатлантическую гонку на воздушных шарах, получившую название Chrysler Challenge. Бельгийский авиатор Вим Верштратен пригласил Пикара в качестве второго пилота - он был уверен, что наличие па борту психотерапевта, владеющего практикой гипноза, может оказаться неплохим преимуществом перед остальными командами. Так и получилось. Экипаж Верштратена и Пикара легко выдержал марафон и выиграл историческую гонку, приземлившись в Испании посте пятидневного перелета длиной в пять тысяч километров.

Для Пикара полет стал не просто откровением, а еще и новым способом взаимодействия с природой. После 18 лет полетов на дельтаплане у него появилась новая мечта - облететь весь мир без мотора и руля, положившись на волю ветра.

И мечта сбылась. Пусть и не с первой попытки. Спонсорами выступили швейцарский производитель часов Breitling и Международный олимпийский комитет. 12 января 1997 года, после трех лет подготовки, воздушный шар под названием Breitling Orbiter взлетел с аэродрома в Швейцарии, но из-за технических неполадок уже через шесть часов приземлился. Breitling Orbiter 2 отправился в полет в феврале 1998 года, но снова не добрался до точки назначения. На этот раз остановка произошла в Бирме, после того как китайские власти отказали Пикару в предоставлении воздушного коридора. Этот полет стал самым длительным путешествием на воздушном шаре в истории (более девяти дней), но цель все еще не была достигнута.

Наконец, третий шар покинул Швейцарию в марте 1999 года и приземлился в Египте после непрерывного полета длительностью почти в 20 суток и протяженностью более 45 тысяч километров. Своим беспрецедентным путешествием Пикар побил семь мировых рекордов, заработал несколько почетных научных званий и вошел в энциклопедии наряду со знаменитыми отцом и дедом.

Breitling Orbiter 3 разместился в Смитсоновском музее воздухоплавания и космонавтики в США, а Бертран Пикар написал несколько книг и стал желанным гостем на многочисленных лекциях и семинарах.

В 2003 году неутомимый Пикар объявил о новом, еще более амбициозном начинании, взявшись за создание пилотируемогосамолета на солнечных батареях , способного облететь весь земной шар. Так появился проект Solar Impulse .

Партнером Пикара и незаменимым СЕО компании стал швейцарский пилот и бизнесмен Андре Боршберг. Он родился в Цюрихе, закончил инженерный факультет Федерального политехнического института в Лозанне (EPFL), получил в легендарном Массачусетском технологическом институте степень в области менеджмента, и с тех пор накопил огромный опыт в качестве основателя и управляющего самых разных бизнес-проектов. Кроме того, с ранних лет Андре увлекался авиацией - учился в школе ВВС Швейцарии и получил не один десяток лицензий, дающих право профессионального управления самолетами и вертолетами всех мыслимых категорий.

Пять лет Боршберг проработал в одной из крупнейших консалтинговых компаний мира McKinsey, после чего основал собственный венчурный фонд, вывел в свет две компании в области высоких технологий и создал благотворительный фонд.

В 2003 году в Лозанне Пикар и Боршберг провели предварительные исследования, подтвердившие принципиальную инженерную возможность реализовать концепцию Пикара. Расчеты подтверждали, что создать летательный аппарат на солнечных батареях теоретически возможно. В ноябре 2003 года проект был официально запущен, и начались разработки прототипа.

Начиная с 2005 гола в Королевском институте метеорологии в Брюсселе моделировались пробные виртуальные полеты модели самолета в реальных условиях аэропортов Женевы и Цюриха. Главной задачей был расчет оптимального маршрута, ведь долго находиться под облаками, закрывающими солнце, СОЛНЕЧНЫЙ САМОЛЕТ не мог. И наконец, в 2007 году началось изготовление самолета.

В 2009 году первенец HB-SIA был готов к испытательным полетам. В процессе создания конструкции перед инженерами стояли две основных задачи. Нужно было минимизировать вес летательного аппарата , одновременно добиваясь максимальной энерговооруженности и эффективности. Первая цель была достигнута за счет использования углеродного волокна, специально разработанной «начинки» и путем избавления от всего лишнего. К примеру, кабина пилота не имела системы обогрева, так что Боршбергу пришлось использовать специальный термокостюм.

Главным, по попятным причинам, стал вопрос получения, накопления и оптимального расходования солнечной энергии. В типичный полдень каждый квадратный метр земной поверхности получает около тысячи ватт или 1,3 «лошадиных силы тепла». 200 квадратных метров фотоэлементов с 12-и % КПД вырабатывают около 6 киловатт энергии. Много ли это? Скажем так, примерно столько же было в распоряжении легендарных братьев Райт в 1903 году.

Па поверхности крыла СОЛНЕЧНОГО САМОЛЕТА было смонтировано более 12 тысяч ячеек. Их эффективность могла бы быть и выше - на уровне тех панелей, что устанавливаются па МКС. Но более эффективные ячейки обладают и большим весом. В невесомости это не играет роли (скорее уж - при подъеме энергетических ферм на орбиту при помощи космических «грузовиков»). Однако СОЛНЕЧНЫЙ САМОЛЕТ Пикара должен был продолжать полет ночью, используя накопленную в аккумуляторах энергию. И вот тут каждый липший килограмм играл критически важную роль. Именно фотоэлементы оказались самым тяжелым компонентом машины (100 килограммов, или около четверти веса летательного аппарата), так что оптимизация этого соотношения стала самой сложной задачей для команды инженеров.

Наконец, на СОЛНЕЧНЫЙ САМОЛЕТ установили уникальную бортовую компьютерную систему, оценивающую все параметры полета и предоставляющую необходимую информацию пилоту, а также наземной команде. В общей сложности инженеры Solar Impulse в процессе реализации проекта создали около 60 новых технологических решений в области материалов и солнечной энергетики.

В 2010 году начались первые и весьма успешные тестовые полеты, а уже в июле Андре Боршберг совершил свой исторический круглосуточный полет.

«К утру в батареях оставалось еще около 10 процентов заряда, - рассказывал воодушевленный Боршберг. - Это прекрасный и совершенно неожиданный для нас результат. Наш самолет размером с авиалайнер и весит как автомобиль, но потребляет энергии не больше, чем мопед. Это начало новой эры, причем не только в авиационной индустрии. Мы показали потенциал возобновляемой энергии: если уж мы можем на ней летать, то способны и на многие другие вещи. С помощью новых технологий мы можем позволить себе сохранить привычный уровень жизни, но потреблять гораздо меньше энергии. Ведь пока что мы слишком зависимы от двигателей внутреннего сгорания и цен на ресурсы!»

HB-SIA – технические данные прототипа

  • Высота полета - 8 500 м
  • Наибольшая масса - 1 600 кг
  • Крейсерская скорость - 70 км/ч
  • Минимальная скорость - 35 км/ч
  • Размах крыла - 63,4 м
  • Площадь крыла - 200 кв.м
  • Длина - 21,85 м
  • Высота - 6,4 м
  • Мощность силовой установки - 4×7,35 кВт
  • Диаметр винтов силовой установки - 3,5 м
  • Масса аккумуляторов - 400 кг
  • КПД солнечных батарей (11 628 монокристаллов) – 22,5%

Имеет ли солнечная авиация будущее? Разумеется, обещает Боршберг. В 1903 году братья Райт были уверены, что пересечь Атлантику на самолете невозможно. А спустя 25 лет Чарльз Линдберг сумел долететь из Нью-Йорка в Париж. Еще столько же лет потребовалось на создание первого 100-местного авиалайнера. Команда Пикара и Боршберга находится только в начале пути, максимальная скорость рабочего прототипа - не более 70 километров в час. Но первый шаг уже сделан.

Впрочем, в Solar Impulse уже знают, что будет дальше. В 2012-2013 годах прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIB с обновленным оборудованием и постоянным давлением в кабине пилота должен совершить первое кругосветное путешествие на «солнечном крыле». Размах несущей поверхности составит около 80 метров - больше, чем у любого современного авиалайнера. Ожидается, что полет пройдет на высоте 12 километров. Правда, он не будет непрерывным. Для смены экипажа из двух пилотов потребуется пять посадок. Ведь полет при все еще невысокой линейной скорости займет более трех-четырех суток.

Как бы то ни было, проект Пикара вселяет оптимизм. Возможно, через пару десятилетий авиакомпании, наконец, перестанут повторять сакраментальную мантру о том, что скоро «нефть кончится». Кончится? Ну, и отлично. Будем летать не на керосине, а на солнечной энергии!



Включайся в дискуссию
Читайте также
Изобретения Леонардо да Винчи: воплощение идей в реальность
Россия построит самые большие в мире танкеры-ледоколы, чтобы перевозить сжиженный газ с ямала Сколько газовозов в мире
Электрический самолёт Sunseeker Duo совершил первые полёты Самолет на солнечных панелях