Подпишись и читай
самые интересные
статьи первым!

Усеченная пирамида. Пирамида. Усеченная пирамида Грани пирамиды наклонены под одним углом

Рассмотрим, какими свойствами обладают пирамиды, в которых боковые грани перпендикулярны основанию.

Если две смежные боковые грани пирамиды перпендикулярны основанию , то общее боковое ребро этих граней является высотой пирамиды . Если в задаче сказано, что ребро пирамиды является ее высотой , то речь идет именно об этом виде пирамид.

Грани пирамиды, перпендикулярные основанию — прямоугольные треугольники.

Если основание пирамиды — треугольник

Боковую поверхность такой пирамиды в общем случае ищем как сумму площадей всех боковых граней.

Основание пирамиды является ортогональной проекцией грани, не перпендикулярной основанию (в данном случае, SBC). А значит, по теореме о площади ортогональной проекции, площадь основания равна произведению площади этой грани на косинус угла между нею и плоскостью основания.

Если основание пирамиды — прямоугольный треугольник

В этом случае все грани пирамиды — прямоугольные треугольники .

Треугольники SAB и SAС прямоугольные, так как SA — высота пирамиды. Треугольник ABC прямоугольный по условию.

То, что треугольник SBC прямоугольный, следует из теоремы о трех перпендикулярах (AB — проекция наклонной SB на плоскость основания. Так как AB перпендикулярна BC по условию, то и SB перпендикулярна BC).

Угол между боковой гранью SBC и основанием в этом случае — угол ABS.

Площадь боковой поверхности равна сумме площадей прямоугольных треугольников:

Так как в данном случае

Если основание пирамиды — равнобедренный треугольник

В этом случае угол между плоскостью боковой грани BCS и плоскостью основания — это угол AFS, где AF — высота, медиана и биссектриса равнобедренного треугольника ABC.

Аналогично — если в основании пирамиды лежит равносторонний треугольник ABC.

Если основание пирамиды — параллелограмм

В этом случае основание пирамиды является ортогональной проекцией боковых граней, не перпендикулярных основанию.

Если разбить основание на два треугольника, то

где α и β — соответственно углы между плоскостями ADS и CDS и плоскостью основания.

Если BF и BK — высоты параллелограмма, то угол BFS — это угол наклона боковой грани CDS к плоскости основания, а угол BKS — угол наклона грани ADS.

(чертеж сделан для случая, когда B — тупой угол).

Если в основании пирамиды лежит ромб ABCD, то углы BFS и BKS равны. Треугольники ABS и CBS, а также ADS и CDS в этом случае также равны.

Если основание пирамиды — прямоугольник

В этом случае угол между плоскостью боковой грани SAD и плоскостью основания есть угол SAB,

а угол между плоскостью боковой грани SCD и плоскостью основания — угол SCB

(по теореме о трех перпендикулярах).

Вспомним: апофема-высота боковой грани пирамиды, проведенная из вершины на ребро основания.
Теорема 5 . Если все боковые грани пирамиды наклонены к плоскости основания под одинаковым углом, то в основание такой пирамиды можно вписать круг, а высота, опущенная из вершины на основание, падает в центр вписанного в основание круга.
Эту теорему можно сформулировать и так:
Теорема 5.1 . Если все апофемы пирамиды равны, то в основание такой пирамиды можно вписать круг, а высота, опущенная из вершины на основание, падает в центр вписанного в основание круга.
Докажем теорему на при мере четырехугольной пирамиды. Пусть дана пирамида КABCD, К -вершина, АВСD - основание. Проведем высоту КО пирамиды. В каждой боковой грани проведем высоту из вершины пирамиды на сторону основания. В плоскости основания соединим точку О (основание высоты) с точкой основаниями этих высот - апофем. ОР, ОТ, ОМ и ОЕ соответственно перпендикулярны АВ, ВС, CD и AD (теорема о трех перпендикулярах). По определению углы КРО, КТО, КМО, КЕО - линейные углы двугранных углов между соответственными боковыми гранями и основанием ABCD. Высота КО является перпендикуляром к основанию, поэтому перпендикулярна любой прямой в этой плоскости, т.е. перпендикулярна прямым ОР, ОТ, ОМ и ОЕ. Это говорит, что треугольники КРО, КТО, КМО, КЕО прямоугольные.
По условию (теорема 5) углы КРО, КТО, КМО, КЕО равны. Рассмотрим треугольники КРО, КТО, КМО, КЕО, они прямоугольны и равны (по катету и острому углу, КО - общая и углы КРО, КТО, КМО, КЕО равны по условию).
По условию (теорема 5.1) КР, КТ, КМ и КЕ равны, поэтому треугольники КРО, КТО, КМО, КЕО прямоугольные и равны по катету и гипотенузе.
Из равенства этих треугольников следует, что их соответствующие стороны ОР, ОТ, ОМ и ОЕ равны, а значит, в четырехугольнике ABCD есть такая точка, которая равноудалена от его сторон, то есть в него можно вписать круг.

Теорема 6 . Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности.
Эту теорему можно сформулировать и так:
Теорема 6.1 . Если все боковые ребра пирамиды равны, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности.
Докажем теорему на при мере четурехугольной пирамиды. Пусть дана пирамида КABCD, К -вершина, АВСD - основание. Проведем высоту КО пирамиды. В плоскости основания соединим точку О (основание высоты) со всеми вершинами основания А, В, С и D. Угол KВО - угол между ребром КB и плоскостью основания (угол между прямой и плоскостью есть угол между этой прямой и её проекцией на эту плоскость). Таким же образом докажем, что углы КСО, КАО и KDO - углы, образованные соответствующими ребрами КС, КА и KD с плоскостью основания. Высота КО является перпендикуляром к основанию, поэтому перпендикулярна любой прямой в этой плоскости, т.е. перпендикулярна прямым ОА, ОВ, ОС и ОD. Это говорит, что треугольники КAО, КBО, КCО, КDО прямоугольные.
Углы КВО, КСО, КАО и KDO равны (по условиям теоремы 6). Рассмотрим треугольники КAО, КBО, КCО, КDО, они прямоугольны и равны (по катету и острому углу, КО - общая и углы КАО, КВО, КСО, КDО равны по условию).
Доказывая теорему 6.1, также рассмотрим треугольники КAО, КBО, КCО, КDО, они прямоугольны и равны по катету и гипотенузе (КО - общая, КА=КВ=КС=KD по условию теоремы).
Из равенствa этих треугольников следует, что их соответствующие стороны ОА, ОВ, ОС и ОD равны, а значит, в основании есть такая точка, которая равноудалена от вершин четырехугольника ABCD, то есть около него можно описать окружность.

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .



Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.


Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).


Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).


Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:


Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:


Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.


Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем



Включайся в дискуссию
Читайте также
Почему Гонконг – не столица, и другие важные факты о финансовом центре Китая В каком году гонконг отошел китаю
Открыть левое меню джамму и кашмир Кухня и рестораны
Краткая информация о румынии Румыния краткие сведения о стране studio