Подпишись и читай
самые интересные
статьи первым!

Как полярники используют свойства льда. Северный ледовитый океан. Плотность льда и воды

Почти десятая часть земной поверхности постоянно покрыта льдом. Примерно 90 процентов этого количества составляют ледяные покровы Антарктиды и Гренландии. Остальные 10 процентов «принадлежат» горным ледникам. Интересно, что покров Антарктиды в 1,5 раза превышает величину США, здесь находится в 9 раз больше льда, чем на ледяных просторах Гренландии.

Жители северных районов используют лед в качестве питьевой воды. Любопытно, что когда морская вода замерзает, в ней оказывается минимальное содержание соли. Поэтому растопленный лед могут использовать и жители северных морских островов или полярных регионов, например эскимосы.

Естественно, что в северных районах, где не встречаются леса, лед находит и свое второе применение — для строительства жилищ. Внешне такое жилище (их называют иглу) напоминает перевернутую вверх дном миску полусферической формы. Оно сложено из больших ледяных блоков. Входят в иглу через небольшую пристройку — сени. Лед обладает достаточно низкой теплопроводностью, и поэтому внутри иглу быстро делается теплее, чем снаружи.

Исследователи Арктики, которые первыми увидели такие ледяные хижины, были удивлены, что при тридцатиградусном морозе снаружи внутри иглу было около нуля. Иглу были распространены у эскимосов Северной Америки и Гренландии.

Используя такие жилища, эскимосы могли свободно уходить на большие расстояния по льду во время охоты. Опыт эскимосов переняли ученые, работавшие на полярных станциях. Уже на первой станции «Северный полюс» в ледяном домике была устроена радиостанция.

Изучение льда очень важно: ископаемые льды, сохранившиеся в высокогорных ледниках и глубинах Антарктиды, представляют собой своеобразную летопись далеких эпох. Их возраст составляет сотни тысяч лет.

Дело в том, что выпавший на поверхность ледника снег постепенно превращается в фирн — рыхлый, зернистый лед с большим количеством воздуха. Постепенно фирн уплотняется и образует лед, в котором остаются мельчайшие пузырьки. Ученые достают их при бурении ледника и изучают в лабораториях.

Анализируя воздух далекого прошлого, ученые узнают, какая на Земле была погода, откуда дули ветры и какую несли с собой пыль. Именно из ископаемого льда ученые узнали, что на Земле было не одно, а два великих оледенения и что произошли они на протяжении последних 220 тысяч лет.

Как вода превращается в лед?

Посмотрим, как вода в водоеме превращается в лед. Когда воздух охлаждается, он охлаждает и верхний слой воды. Верхний холодный слой воды становится тяжелее, чем теплые нижние слои, и он опускается вниз. Этот процесс продолжается до тех пор, пока вся вода пруда охладится до температуры порядка 4° С.

Но температура воздуха понижается! Когда верхние слои воды охлаждаются до температуры ниже 4° С, они остаются на поверхности. Дело в том, что вода, охлажденная до температуры ниже 4° С, по существу становится легче!

Итак, верхние слои воды готовы к замерзанию. Когда температура остается на уровне точки замерзания 0° С или опускается ниже, начинают образовываться мельчайшие кристаллики.

Каждый такой кристалл имеет шесть лучей. Соединяясь, они образуют лед, и вскоре на поверхности воды образуется корочка льда. Иногда лед прозрачный, иногда — нет. Почему? Дело в том, что при замерзании капелек воды выделяются мельчайшие пузырьки воздуха. Они прилипают к лучам кристаллов льда. Чем больше образуется кристалликов льда, тем больше пузырьков воздуха — вот вам и непрозрачный лед.

Если вода подо льдом движется, воздушные пузырьки собираются вместе, и образуется прозрачный лед.

Вода, как и некоторые другие вещества, не уменьшает своего объема при переходе из жидкого в твердое состояние. Вода при замерзании расширяется на одну девятую своего объема, то есть при замерзании девяти литров воды получается десять литров твердого льда! Когда зимой лопаются автомобильные радиаторы и водопроводы, это происходит оттого, что вода замерзает и увеличивается в объеме!

Маленькие дети очень часто задают интересные вопросы взрослым, а те не всегда могут ответить на них сразу. Чтобы не казаться ребенку глупым, рекомендуем ознакомиться с полноценным и развернутым, обоснованным ответом касательно плавучести льда. Ведь плавает, а не тонет. Почему же так происходит?

Как объяснить ребенку сложные физические процессы?

Первое, что приходит на ум, так что плотность. Да, на самом деле, лёд плавает потому, что он менее плотный, чем . Но как объяснить ребенку, что такое плотность? Рассказывать ему школьную программу никто не обязан, а вот свести все к тому, что , вполне реально. Ведь по факту один и то же объем воды и льда обладает разным весом. Если изучать проблему более подробно, то можно озвучить еще несколько причин, кроме плотности.
не только потому, что его уменьшенная плотность не дает ему опускаться ниже. Причина еще и в том, что в толще льда заморожены небольшие пузырьки воздуха. Они также уменьшают плотность, а потому в общем получается, что вес пластины из льда становится еще меньше. Когда лед расширяется, он не захватывает больше воздуха, но зато все те пузырьки, которые уже оказались внутри этого пласта, оказываются там до тех пор, пока лед не начнет таять или сублимироваться.

Проводим опыт над силой расширения воды

Но как доказать, что лёд на самом деле расширяется? Ведь вода тоже может расширяться, как же доказать это в искусственных условиях? Можно провести интересный и очень простой опыт. Для этого понадобится пластиковый или картонный стаканчик и вода. Ее количество необязательно должно быть большим, заполнять стаканчик до краев не потребуется. Также в идеале нужна температура около -8 градусов или ниже. Если температура будет слишком высокой, опыт продлится неоправданно долго.
Итак, вода залита внутрь, надо ждать, когда образуется лёд. Поскольку мы выбрали оптимальную температуру, при которой небольшой объем жидкости обратится в лёд в течение двух-трех часов, можно спокойно идти домой и ждать. Ждать нужно до тех пор, пока вся вода не обратится в лед. Спустя некоторое время смотрим на результат. Деформированный или разорванный льдом стаканчик гарантирован. При более низкой температуре последствия выглядят более эффектно, да и сам эксперимент занимает меньше времени.

Негативные последствия

Получается простой опыт подтверждает, что в ледяные глыбы и правда расширяются при уменьшении температуры, а объем воды легко увеличивается при замерзании. Как правило, эта особенность несет немало проблем забывчивым людям: бутылка шампанского, оставленная на балконе под Новый год на большой срок, разрывается из-за воздействия льда. Поскольку сила расширения очень большая, повлиять на нее никак нельзя. Ну а что касается плавучести ледяных глыб, то здесь можно ничего не доказывать. Самые любопытные могут легко провести подобный опыт весной или осенью самостоятельно, пытаясь утопить в большой луже кусочки льда.

— наименьший по площади океан Земли, расположен между Евразией и Северной Америкой. Площадь 14,75 млн. кв. км, средняя глубина 1225 м, наибольшая глубина 5527 м в Гренландском море. Объём воды 18,07 млн. км³.

Этот океан отличается суровостью климата, обилием льдов и относительно малыми глубинами. Жизнь в нем полностью зависит от обмена водой и теплом с соседними океанами.

Северный Ледовитый океан - наименьший из океанов Земли. Он самый мелководный. Океан расположен в центре Арктики, которая занимает все пространство вокруг Северного полюса, включающее океан, прилегающие части материков, острова и архипелаги.

Значительную часть площади океана составляют моря, большинство которых окраинные и только одно внутреннее. В океане много островов, расположенных вблизи материков.

История исследования океана. Исследование Ледовитого океана - это история героических подвигов многих поколений мореплавателей, путешественников и ученых ряда стран. В далекие времена на утлых деревянных кочах и ладьях пускались русские люди - поморы в путешествия. Зимовали на Груманте (Шпицбергене), плавали к устью Оби. Они вели промысел рыбы, охотились на морского зверя и хорошо знали условия плавания в полярных водах.

Используя сведения о плаваниях русских, англичане и голландцы предприняли попытки отыскать кратчайшие пути из Европы в страны Востока (Китай и Индию). В итоге плавания Виллема Баренца в конце XVI в. была составлена карта западной части океана.

Начало планомерному изучению берегов океана положила Великая Северная экспедиция (1733-1743). Ее участники совершили научный подвиг - прошли и положили на карту берега от устья Печоры до Берингова пролива.

Первые сведения о природе приполярных областей океана были собраны в конце XIX в. во время дрейфа «Фрама» Ф. Нансена и плавания к полюсу в начале ХХ в. Г. Седова на шхуне «Св. Фока».

Возможность прохода через океан за одну навигацию была доказана в 1932 г. экспедицией ледокола «Сибиряков». Участники этой экспедиции под руководством О. Ю. Шмидта проводили промеры глубин, измеряли толщину льда, вели наблюдения за погодой.

В нашей стране были разработаны новые методы исследования этого океана. В 1937 г. на дрейфующей льдине была организована первая полярная станция «Северный полюс» (СП-1). Четыре полярника во главе с И. Д. Папаниным провели героический дрейф на льдине от Северного полюса до Гренландского моря.

Для исследования океана сейчас при меняют самолеты, которые садятся на льдины и проводят одноразовые наблюдения. Снимки из космоса дают информацию об изменениях в состоянии атмосферы над океаном, о перемещении льдов.

В результате всех этих исследований накоплен большой материал о природе Северного Ледовитого океана: о климате, органическом мире; уточнено строение рельефа дна, изучены придонные течения.

Многие тайны природы Ледовитого океана уже известны, но многое еще предстоит открыть будущим поколениям, в том числе, может быть, и кому-то из вас.

Рельеф дна имеет сложное строение. Центральная часть океана пересечена горными хребтами и глубокими разломами. Между хребтами лежат глубоководные впадины и котловины. Характерная особенность океана - большой шельф, который составляет более трети площади дна океана.

Климатические особенности определяются полярным положением океана. Над ним преобладают арктические воздушные массы. Летом часты туманы. Воздушные массы Арктики значительно теплее воздушных масс, формирующихся над Антарктикой. Причина этого - запас тепла в водах Ледовитого океана, который постоянно пополняется теплом вод Атлантики и в меньшей мере Тихого океана. Таким образом, как ни странно, Северный Ледовитый океан не охлаждает, а существенно согревает обширные пространства суши Северного полушария, особенно в зимние месяцы.

Под действием западных и юго-западных ветров из Северной Атлантики в Ледовитый океан входит мощный поток теплых вод Северо-Атлантического течения. Вдоль берегов Евразии воды движутся с запада на восток. Через весь океан от Берингова пролива до Гренландии происходит движение вод в обратном направлении - с востока на запад.

Самая характерная особенность природы этого океана наличие льдов. Их образование связано с низкой температурой и относительно низкой соленостью поверхностных водных масс, которые опреснены большим количеством речных вод, стекающих с материков.

Вынос льда в другие океаны затруднен. Поэтому здесь преобладает многолетний лед толщиной 2-4 м и больше. Ветры и течения вызывают движение и сжатие льдов, образование торосов.

Основную массу организмов в океане образуют водоросли, способные жить в холодной воде и даже на льдах. Органический мир богат только в приатлантическом районе и па шельфе близ устьев рек. Здесь образуется планктон, на дне растут водоросли, обитают рыбы (треска, навага, палтус). В океане живут киты, тюлени, моржи. Обитают в Арктике белые медведи, морские птицы, ведущие колониальный образ жизни и обитающие на берегах. Все население гигантских «птичьих базаров» питается в океане.

В Ледовитом океане выделяют два природных пояса. Граница полярного (арктического) пояса на юге примерно совпадает с краем континентального шельфа. Эта наиболее глубоководная и суровая часть океана покрыта дрейфующими льдами. Летом льдины покрываются слоем талой воды. Этот пояс малопригоден для жизни организмов.

Часть океана, прилегающая к суше, относится к субполярному (субарктическому) поясу. В основном это моря Ледовитого океана. Природа здесь не так сурова. Летом у берегов вода свободна ото льда, сильно опреснена реками. Проникающие сюда теплые воды из Атлантики создают условия для развития планктона, которым питаются рыбы.

Виды хозяйственной деятельности в океане. Северный Ледовитый океан имеет исключительно важное значение для стран, берега которых омывают его воды. Суровая природа океана затрудняет в нем поиски полезных ископаемых. Но уже разведаны месторождения нефти и природного газа на шельфе Карского и Баренцева морей, у берегов Аляски и Канады.

Биологические богатства океана невелики. В приатлантическом районе ловят рыбу и добывают водоросли, охотятся на тюленей. Добыча китов в океане строго лимитирована.


Обывателю, как правило, совершенно непонятно, что делают эти
люди там, «у Земли на макушке», в условиях экстремальных морозов, полярной ночи,
на льдине, которая может в любой момент расколоться, и без привычного комфорта
современной цивилизации. Когда я обратился с просьбой рассказать о научных
исследованиях на льдине к заместителю начальника СП-36 по науке Владимиру
Чуруну, он задумчиво сказал в ответ: «Вы знаете, я бы тоже не отказался узнать
об этом!»

Существует множество способов изучения Арктики. Автоматические научные комплексы — метеорологические и океанографические станции, масс-балансовые буи, которые вмораживаются в лед и позволяют определять нарастание или изменение массы ледяного покрова (кстати, такой буй работает на СП-37), — значительно облегчают сбор данных, но имеют свои ограничения. Конечно, заманчиво было бы сидеть в офисе, пока данные поступают через спутниковую связь от системы, к примеру, автоматических гидрологических станций — якорных или дрейфующих буев. Но за год обычно теряется более 50% таких (весьма недешевых) буев — в этом регионе условия работы достаточно тяжелы даже для специально рассчитанной на это техники в связи с динамикой ледяных полей (торошением, сжатием).

Еще один способ получения научных данных — дистанционное зондирование Земли. Научные спутники (к сожалению, не российские) позволяют получать информацию о ледовой обстановке в видимом, ИК-, радиолокационном и микроволновом диапазонах. Эти данные в основном используются в прикладных целях: для проводки судов, для поиска подходящих для дрейфующих станций льдин; на самих дрейфующих станциях они помогают в работе - например, на СП-36 их использовали для обнаружения площадки, пригодной для построения взлетно-посадочной полосы. Однако спутниковую информацию необходимо проверять, сопоставляя ее с реальными наблюдениями — непосредственно измеренной толщиной льда, его возрастом (прямо измерить эти данные со спутника пока невозможно).

Научные станции (уже обитаемые) можно также размещать методом вмораживания судов в лед (этот способ был опробован еще Фритьофом Нансеном). Время от времени такие проекты осуществляются, в качестве примера можно привести французскую яхту «Тара» или американско-канадский проект SHEBA с участием судна, дрейфовавшего в море Бофорта. Подобный проект рассматривался и в отношении атомного ледокола «Арктика», но в конце концов от него по различным причинам отказались. Однако вмороженные суда обеспечивают лишь хорошую базу для жизнедеятельности научного персонала и энергоснабжение научного комплекса. Для сбора научных данных людям все равно придется сходить на лед, чтобы исключить постороннее влияние. К тому же вмораживание судов обходится недешево (и отвлекает суда от их основной работы).


«На мой взгляд, дрейфующий лед— это естественная несущая платформа, наиболее оптимальная как для размещения научного комплекса, так и для проживания людей, - говорит Владимир Чурун. — Она позволяет дрейфовать в течение длительного времени и получать чистые научные данные без какого-либо влияния извне. Конечно, люди на льдине лишены некоторого комфорта, но с этим во имя науки приходится мириться. Разумеется, получение научных данных должно осуществляться в комплексе, с использованием всех доступных средств — и дрейфующих станций, и воздушных экспедиций, и спутникового наблюдения, и автоматических буев, и научно-экспедиционных судов».

«Научная программа СП-36 была достаточно обширна и успешна, — объясняет «Популярной механике» Владимир Чурун. — Она включала в себя метеорологические, аэрологические и гидрологические наблюдения, а также исследования свойств льда и снежного покрова. А вот исследования, связанные с ионосферой и магнитным полем Земли, которым в советское время на дрейфующих станциях уделялось немалое внимание, ныне переданы на стационарные полярные станции на материке и на островах».


Воздух

Начало работы станции знаменуется вовсе не торжественным моментом подъема российского флага над кают-компанией. Официально дрейфующая станция начинает свою работу с момента передачи первой метеосводки в ААНИИ, а оттуда — в глобальную метеорологическую сеть. Поскольку, как известно, «Арктика — кухня погоды», эти данные обеспечивают метеорологов чрезвычайно ценной информацией. Изучение барических (давление, скорость и направление ветра на различных высотах) и температурных профилей атмосферы с помощью зондов до высоты 30 км используется не только для предсказания погоды — эти данные в дальнейшем могут использоваться как для фундаментальных научных целей, таких как уточнение моделей физики атмосферы, так и для прикладных— например, обеспечения полетов самолетов. За все эти данные ответственны метеорологи и аэрологи.

Работа метеоролога может показаться простой — это снятие метеоданных и их отсылка в Росгидромет. Для этого на 10-метровой метеомачте расположен набор датчиков, измеряющих скорость и направление ветра, температуру и влажность, видимость и давление. Вся информация, в том числе от выносных датчиков (температуры снега и льда, интенсивности солнечной радиации), стекается на метеостанцию. Хотя данные снимаются со станции дистанционно, проводить измерения без выхода на метеоплощадку получается далеко не всегда. «Чашки анемометров и радиационная защита метеобудки, где расположены датчики температуры и влажности воздуха, обмерзают, их приходится очищать от изморози (для доступа к верхней части мачты последняя сделана ‘ломающейся’), - поясняет инженер-метеоролог СП-36 Илья Бобков.- А в период таяния растяжки постоянно приходится крепить, чтобы мачта была устойчивой. Кроме того, станция не рассчитана на работу в условиях столь суровых морозов, ниже - 40°C, поэтому мы вмонтировали туда подогрев - обычную 40-ваттную лампу накаливания. Конечно, есть станции, рассчитанные на столь низкие температуры, но они менее точные».

Выше 10 м — область работы аэрологов. «Мы изучаем верхние слои атмосферы с помощью аэрологических зондов, - объясняет ведущий инженер-аэролог СП-36 Сергей Овчинников. - Зонд — это коробочка массой 140 г, ее прикрепляют к аэростату — шару объемом около 1,5 м 3 , наполненному водородом, который получают химическим способом в газогенераторе высокого давления — из порошка ферросилициума, едкого натра и воды. В зонд встроены GPS-приемник, телеметрический передатчик, а также датчики температуры, давления и влажности. Каждые две секунды зонд передает информацию вместе со своими координатами на наземную приемную станцию». Координаты зонда позволяют рассчитать его перемещение, скорость и направление ветра на различных высотах (высота определяется барометрическим способом). Электроника зонда питается от водозаливной батареи, которую предварительно выдерживают в воде несколько минут (подобными источниками питания оснащаются спасательные жилеты с аварийными маяками).

«Зонды запускаются каждый день в 0 и в 12 часов по Гринвичу, если позволяют погодные условия, при сильном ветре зонд просто «прибивает» к земле. За неполный год состоялось 640 выпусков, - говорит Сергей Овчинников.- Средняя высота подъема составила 28770 м, максимальная — 32400 м. Скорость подъема зонда — около 300 м в минуту, так что предельной высоты он достигает приблизительно за час-полтора, шар по мере подъема раздувается, а потом лопается, и зонд падает на землю. Правда, найти его практически невозможно, так что прибор одноразовый, хоть и дорогой».


Вода

«Основной упор в нашей работе делается на измерение параметров течений, а также температуры, электропроводности, плотности воды, - говорит океанолог СП-36 Сергей Кузьмин.- За последние годы парк приборов значительно обновился, и теперь мы можем получать результаты с высокой точностью, соответствующей мировому уровню. Сейчас мы используем приборы-профилографы, которые позволяют измерять скорость течения с помощью поперечного эффекта Доплера в нескольких слоях.

В основном исследовали атлантические течения, верхняя граница которых находится на глубине 180-220 м, а ядро — 270-400 м». Кроме изучения течений было предусмотрено ежедневное изучение толщи воды с помощью зонда, измерявшего электропроводность и температуру, каждые шесть дней проводились исследования на глубине до 1000 м, чтобы «захватить» атлантические воды, а раз в неделю зонд опускался на всю максимальную длину троса — 3400 м, чтобы изучить глубоководные слои. «В некоторых районах,- объясняет Сергей Кузьмин, - в глубоких слоях можно наблюдать геотермальный эффект».

В задачу океанологов на СП-36 входил также и сбор проб для последующего анализа гидрохимиками. «Три раза за время зимовки — весной, летом и осенью — мы отбирали керн льда, который затем растапливали при комнатной температуре, полученную воду пропускали через фильтр, затем снова замораживали, - говорит Сергей. - И фильтр, и лед специальным образом упаковывали для последующего анализа. Точно так же отбирали пробы снега и подледную воду. Брали и пробы воздуха — с помощью аспиратора, который прокачивал воздух через несколько фильтров, задерживавших мельчайшие частицы. Ранее таким образом удалось, например, обнаружить пыльцу некоторых видов растений, которая долетает в приполюсные районы из Канады и российской тайги».

Для чего изучают течения? «Путем сравнения с данными, накопленными за предыдущие годы, можно выяснить климатические тенденции, - отвечает Сергей. - Такой анализ позволит понять, например, поведение льдов в Северном Ледовитом океане, что чрезвычайно важно не только в фундаментальном отношении, но и в чисто прикладном — например, при освоении природных ресурсов Арктики».


Снег

Программа специальных метеорологических исследований включала несколько разделов. Исследовалась структура снежно-ледяного покрова, его теплофизические и радиационные свойства — то есть то, как он отражает и поглощает солнечную радиацию. «Дело в том, что у снега высокая отражающая способность, и по этой характеристике, например на спутниковых снимках, он очень напоминает облачный слой, - поясняет метеоролог Сергей Шутилин. - Особенно зимой, когда температура и там и там составляет несколько десятков градусов ниже нуля. Я изучал теплофизические свойства снега в зависимости от температуры, ветра, облачности и солнечной радиации». Измерялось также и проникновение солнечной радиации (разумеется, во время полярного дня) сквозь снег и лед на различные глубины (в том числе и в воду). Изучались также морфология снега и его теплофизические свойства — температура на различных глубинах, плотность, пористость, фракционный состав кристаллов в различных слоях. Эти данные совместно с радиационными характеристиками помогут уточнить описание снежно-ледяного покрова в моделях различного уровня — как в глобальных климатических, так и в региональных.

Во время полярного дня проводили измерения доходящего до поверхности Земли ультрафиолета, а в полярную ночь с помощью газоанализаторов изучали концентрации углекислого газа, приземного озона и метана, выбросы которого в Арктике связаны, по-видимому, с геологическими процессами. С помощью специального газоанализатора удалось также получить, по словам Сергея Шутилина, уникальные данные о потоках углекислого газа и водяного пара через поверхность снега и льда: «Ранее существовала модель, согласно которой талые воды с побережья попадали в океан, океан покрывался льдом, и под ним шли анаэробные процессы. А после того, как поверхность освобождалась от льда, в атмосферу шел поток углекислого газа. Мы обнаружили, что поток идет в обратную сторону: когда льда нет, то в океан, а когда есть — в атмосферу! Впрочем, это может зависеть и от района — например, измерения на СП-35, которая дрейфовала ближе к югу и к шельфовым морям в восточном полушарии, согласуются с приведенной гипотезой. Так что нужны дополнительные исследования».

Ко льду сейчас привлечено самое пристальное внимание, ведь он - наглядный индикатор происходящих в Арктике процессов. Поэтому его изучение чрезвычайно важно. В первую очередь это оценка массового баланса льда. Летом он тает, зимой нарастает, поэтому регулярные измерения его толщины по мерным рейкам на выделенном полигоне дают возможность оценивать скорость таяния или нарастания льдины, и эти данные затем можно использовать для уточнения различных моделей образования многолетнего льда. «На СП-36 полигон занимал площадку 80х100 м, и с октября по май на нем наросло 8400 т льда, - говорит Владимир Чурун. - Можете себе представить, сколько льда наросло на всю льдину размером 5х6 км!»

«Мы также взяли несколько кернов молодого и старого льда, которые будут исследовать в ААНИИ, — химический состав, механические свойства, морфология, - рассказывает ледоисследователь СП-36 Никита Кузнецов. - Эта информация может быть использована при уточнении различных климатических моделей, а также, например, в инженерных целях, в том числе и для строительства ледоколов».

Кроме того, на СП-36 проводились исследования процессов прохождения различных волн в морском льду: волн, образующихся при соударениях льдин, а также переходящих из морской среды в лед. Эти данные регистрируются с помощью высокочувствительных сейсмометров и используются в дальнейшем для прикладных моделей взаимодействия льда с твердыми телами. По словам ведущего инженера-ледоисследователя СП-36 Леонида Панова, это дает возможность оценить нагрузки на различные инженерные сооружения — суда, буровые платформы и т. д. — сточки зрения ледовой стойкости: «Зная особенности взаимодействия льда с волнами, можно рассчитать прочностные свойства льда, а значит, предсказать, где именно он сломается. Такие методы позволят дистанционно обнаруживать прохождение трещин и торошение в опасных областях — например, поблизости от нефте- и газопроводов».

Не курорт

Когда я спросил Владимира, как ощущаются глобальные изменения климата (а именно — глобальное потепление) во время работы на дрейфующей станции, он в ответ лишь улыбнулся: «Разумеется, площадь льдов и их толщина в Арктике сократились — это вполне зарегистрированный научный факт. Но на дрейфующей станции, в локальном пространстве льдины глобальное потепление совершенно не ощущается. В частности, во время этой зимовки мы зафиксировали минимум температуры за последние десять лет (- 47,3°С). Ветер был не очень сильный — максимальные порывы составляли 19,4 м/с. Но в целом зима с февраля по апрель была очень холодной. Так что, несмотря на глобальное потепление, Арктика не стала ни теплее, ни уютнее, ни комфортнее. Здесь все так же холодно, все так же дуют холодные ветры, все такие же льды вокруг. И надеяться на то, что Чукотка вскоре станет курортом, пока не приходится».

Дмитрий Мамонтов.

Тема: Северный ледовитый океан .

Цель урока: Сформировать понятие о Северном ледовитом океане как природное сообщества.

Образовательные: Формирование знаний о природе СЛО: Познакомиться с обитателями СЛО, уметь объяснять особенности приспособления живых организмов к обитанию в СЛО.

Развивающие: Развивать умения работать с информацией (обрабатывать её различными способами, критически относится к информации), развивать речь, память. Определять тему и цели урока; получать информацию из разных источников;

анализировать прочитанный текст.

Воспитательные: воспитывать любознательность, интерес к предмету, расширять кругозор учащихся, развивать желание познавать новое, слушать ответы товарищей; слушать и воспринимать речь учителя.

Оборудование: электронная презентация, учебник, карта природных зон России, словарик.

Ход урока

I . Организационный момент.

Здравствуйте ребята. У нас на уроке гости. Поприветствуем их.

Окружающий нас мир

Интересно познавать

Его тайны и загадки

Вы готовы разгадать?

Проверка домашнего задания.

2. Актуализация знаний

Отгадайте загадки:

Состоит он из морей.
Ну, давай, ответь скорей.
Это – не воды стакан,
А, огромный … океан

На земной поверхности существует много различных водоёмов. Как вы думаете, какой водоём самый большой? (океан)

Чтение в словаре о том, что такое океан.

(Океан - часть Мирового океана, находящаяся между материками)

Сколько океанов на Земле? (4) Работа с картой мира.

Какой самый большой? А какой маленький?

Какой глубокий? Какой не очень глубокий?

Какой самый теплый океан? А какой самый холодный?

А есть ли жизнь в океане?

А в холодном?

Сегодня мы заглянем в этот холодный океан.

2. Работа по теме урока.

Как вы думаете в каких климатических условиях расположен СЛО?

Да, там очень холодно. Как растительный так и животный мир, все должны быть приспособлены к суровым условиям обитания.

Если долго-долго идти на Север, никуда не поворачивая и не отклоняясь, то мы попадем на Северный полюс. Издавна эту область Земли называют Арктикой - от греческого слова arkticos - северный, так древние греки называли расположенное в северной части неба созвездие Большой Медведицы

Сегодня на уроке у нас очередное заседание клуба «Мы и окружающий мир». Его мы посвящаем изучению СЛО. Разделимся на 4 группы: географы, биологи, зоологи и экологи. Заседание нашего клуба пройдет по плану: (на доске)

    Местоположение СЛО и особенности неживой природы (группа географов).

    Растения СЛО (группа биологов).

    Животные СЛО (группа зоологов).

    Арктика и человек (группа экологов).

Даем слово группе географов .

Местоположение и особенности неживой природы

Северный Ледовитый океан – самый холодный океан в мире. Большая часть поверхности океана и его островов в течение всего года покрыта многолетними льдами толщиной до 5 метров. Лишь кое-где на островах льда нет, но и здесь земля промерзает на много метров в глубину. Почва на таких островах не образуется.

Природа СЛО очень сурова. Зимой там ПОЛЯРНАЯ НОЧЬ. С середины октября и до февраля солнца совсем не видно. Дуют сильные ветры, неделями метет пурга, температура воздуха нередко понижается до - 60◦С. Полярной ночью здесь можно наблюдать одно из удивительных явлений природы – СЕВЕРНОЕ СИЯНИЕ. Очевидцы говорят, что полярное сияние похоже на причудливый занавес, который колышется в темном небе. Занавес разделен на светящиеся разноцветные полосы, сияющие чистыми цветами радуги.

Летом в СЛО ПОЛЯРНЫЙ ДЕНЬ. В течение нескольких месяцев круглые сутки светло. Но солнце поднимается невысоко над горизонтом, и температура редко бывает выше 3-4◦С. Поэтому даже за долгий полярный день вековые льды не успевают растаять.

Физминутка .

Три медведя шли домой.

Папа был большой-большой.

Мама чуть поменьше ростом.

Ну, а сын – малютка просто.

Очень маленький он был,

С погремушками ходил.

Дадим слово группе биологов.

Растения

Суровые природные условия переносят только стойкие и неприхотливые растения. Большие площади заняты каменными россыпями. Почвы почти нет. В летнее время снег местами тает, и камни обнажаются. На них - то и растут ЛИШАЙНИКИ, похожие на серую накипь . Лишайники – удивительные организмы. Основную массу лишайника составляют тончайшие белые или бесцветные трубочки. Это грибные нити. Из таких трубочек состоит всякое грибное тело. А между грибными трубочками находятся изумрудные шарики. Это малютки – водоросли. ЯГЕЛЬ – как и все лишайники, состоит из двух организмов – гриба и водоросли, соединенных в одно целое. Во влажном состоянии ягель мягкий, упругий. Но после высыхания становится хрупким, легко крошится. Мельчайшие его крошки легко переносятся ветром и способны укорениться. Именно таким образом ягель в основном и размножается. Ягель – основная пища северных оленей. Олени безошибочно находят его по запаху даже зимой под снегом.

В южных районах океана можно встретить кое–где ПОЛЯРНЫЙ МАК, стелющиеся ПОЛЯРНЫЕ ИВЫ. Их легко можно принять за травянистые растения, ведь высотой они всего 5-10 сантиметров.

Дадим слово группе зоологов.

Животные

Моржам и тюленям не дает замерзнуть толстый слой подкожного жира. МОРЖИ - близкие родственники тюленей, большие и сильные, и мало кто решается нападать на них. У них два длинных клыка, которые они используют в боях и чтобы выбираться из воды на лед для отдыха. У моржей крепкие губы, позволяющие высасывать съедобных моллюсков из раковин. Морж может съесть 3000 моллюсков за день.

У БЕЛОГО МЕДВЕДЯ густой мех хорошо сохраняет тепло. Сутками бродит великан Арктики по снежной пустыне в поисках добычи. Он часами может лежать возле лунки во льду, выжидая, когда вынырнет за порцией воздуха тюлень. Полярные (белые) медведи - самые крупные и сильные животные СЛО, на них никто не нападает. В середине зимы в заснеженных берлогах у них рождаются детеныши. Мать кормит их своим молоком, а сама ничего не ест, пока не потеплеет настолько, что она может выйти на охоту. Белые медведи имеют великолепный нюх и могут очень быстро бегать по льду, преследуя жертву. Они хорошо плавают и ныряют. Летом они питаются травой, лишайниками, черникой и леммингами.

На скалистых берегах - птичьи базары. Здесь гнездится множество морских птиц: топорики, кайры, тупики, различные виды чаек. По побережью живут гуси и утки. Среди них наиболее известны гаги, имеющие мягкий теплый пух. Некоторые животные могут жить круглый год в СЛО. Другие животные навещают эти места только летом, когда лед тает, и море очищается ото льда. Растения, которые вырастают летом, - основной источник питания многих животных.

Какие у них приспособления к данным условиям обитания?

Давайте один из видов животных возьмем и перенесем к нам.

Например: Белый медведь, сможет ли жит в наших условиях?

Почему нет?

Работа с книгой

- Ребята, послушайте. Я сейчас задам вам вопросы, а вы должны ответить.

Посмотрим кто из вас самый внимательный и активный.

Каких полярников запомнили?

Что раньше думали полярники?

Что нового узнали?

Что в «Макушке» Земли?

В наши дни с помощью какого аппарата изучают океан?

Слово нашим экологам.

СЛО и человек .

Постоянных поселений людей в СЛО нет. Однако люди здесь живут. Через северный Ледовитый океан пролегает самый короткий путь из Атлантического океана в Тихий. Поэтому по Северному морскому пути регулярно движутся караваны торговых судов, путь которым сквозь льды прокладывают мощные ледоколы.

На островах и во льдах Северного Ледовитого океана много научных станций. Здесь полярники наблюдают за погодой, изучают, куда дрейфуют льдины в океане, исследуют природу Севера. Собранные ими данные помогают прокладывать путь во льдах, а метеорологам – составлять прогноз погоды.

В морях СЛО люди занимаются рыболовством и охотой. К сожалению, из-за того, что человек все больше и больше осваивает СЛО, оказалась в опасности ее природа. Стали редкими такие животные, как белый медведь, морж, гренландский кит, белый гусь, овцебык.

Для охраны этих редких животных на полуострове Таймыр и на острове Врангеля созданы заповедники.

Исходя из растительного и животного мира, чем может заниматься люди?

Несмотря на холод СЛО нам нужен.

Словарная работа

Что такое заповедник?

Откройте словарь и найдите, что такое заповедник?

Физминутка .

Движения под песню про пингвинов

4. Закрепление пройденного.

а) фронтальный опрос:

Сравни природные условия своей местности с природными условиями Арктики.

Какие растения и животные характерны для арктической зоны?

Почему люди с давних пор осваивают Арктику?

Какие меры принимают люди, защищая природу северного края?

Почему среди животных Арктики преобладают те, которых кормит море?

б) цепи питания:

Водоросли – рачки – рыбы – птицы

Водоросли – рачки – рыбы – тюлени

Рыбы – тюлени – белые медведи

в) Заполните таблицу сегодняшней экспедиции (взаимопроверка в парах)

Арктика – царство снега и льда

Географическое положение

Северный Ледовитый океан, северные моря, острова

Освещенность

Полярный день и полярная ночь, Северное сияние

Растительный и животный мир

Лишайники, мхи, полярный мак, брусника, морошка, рачки, рыбы, гагарки, белый медведь, морж, тюлень

Деятельность человека

Научные станции, Северный морской путь, рыбный промысел, охота

г) разгадать кроссворд: (на доске)

Решение кроссворда "СЛО".

Если правильно отгадаешь кроссворд, то по центру прочитаешь слово.

Вопросы.

1. Эти птицы собираются летом на скалистых берегах в шумные "птичьи базары", очень любят полакомиться рыбой.

2. Близкий родственник тюленя.

3. Птицы, которые откладывают яйца прямо на голые уступы скал.

4. На них очень любит поохотиться белый медведь.

5. Самое распространенное растение полярных районов.

6. Самый крупный обитатель морей и океанов.

7. Маленькие жители морей, которыми питаются рыбы.

Ответы. 1. Чайка. 2. Морж. 3. Кайры. 4. Тюлень. 5. Лишайники. 6. Кит. 7. Рачки.

Чему же мы с вами учились на уроке? (Работать с текстом; работать в парах, находить нужную информацию)

Что вы узнали?

5.Домашнее задание. Подготовить рассказ об обитателях СЛО.



Включайся в дискуссию
Читайте также
Изобретения Леонардо да Винчи: воплощение идей в реальность
Россия построит самые большие в мире танкеры-ледоколы, чтобы перевозить сжиженный газ с ямала Сколько газовозов в мире
Электрический самолёт Sunseeker Duo совершил первые полёты Самолет на солнечных панелях